Normalized defining polynomial
\( x^{18} - 5 x^{17} - 50 x^{16} + 287 x^{15} + 840 x^{14} - 5401 x^{13} - 14811 x^{12} + 89776 x^{11} + 155150 x^{10} - 1214856 x^{9} - 284084 x^{8} + 10748536 x^{7} - 11983740 x^{6} - 43606048 x^{5} + 107242976 x^{4} - 5419904 x^{3} - 197999872 x^{2} + 214803968 x - 99042304 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75345346281286616442657800000000000=2^{12}\cdot 5^{11}\cdot 37^{6}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} - \frac{1}{16} a^{11} + \frac{3}{16} a^{9} + \frac{5}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} + \frac{1}{32} a^{13} - \frac{1}{64} a^{12} + \frac{1}{16} a^{11} - \frac{1}{64} a^{10} - \frac{15}{64} a^{9} + \frac{7}{16} a^{8} - \frac{13}{32} a^{7} - \frac{1}{2} a^{6} - \frac{1}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1664} a^{16} + \frac{5}{1664} a^{15} - \frac{5}{416} a^{14} + \frac{7}{128} a^{13} - \frac{17}{832} a^{12} + \frac{135}{1664} a^{11} + \frac{11}{1664} a^{10} - \frac{87}{832} a^{9} + \frac{207}{832} a^{8} - \frac{79}{416} a^{7} - \frac{145}{416} a^{6} + \frac{41}{104} a^{5} + \frac{61}{416} a^{4} - \frac{47}{208} a^{3} - \frac{15}{52} a^{2} - \frac{7}{26} a - \frac{3}{13}$, $\frac{1}{21969709146030018008310362891229310765241290827764562727424} a^{17} + \frac{2726950222913660433783305469984609565305391130505372127}{21969709146030018008310362891229310765241290827764562727424} a^{16} - \frac{70399259712096137604851591569478342423549878979605528475}{10984854573015009004155181445614655382620645413882281363712} a^{15} + \frac{265958863111881525499811715330003983489708298351912790039}{21969709146030018008310362891229310765241290827764562727424} a^{14} - \frac{259964631594898688019018297260882578686489922901554092699}{5492427286507504502077590722807327691310322706941140681856} a^{13} - \frac{2259626906962913402849842277000346097280554135900029900105}{21969709146030018008310362891229310765241290827764562727424} a^{12} + \frac{2689761097270112054708222141399998893673967328661615076785}{21969709146030018008310362891229310765241290827764562727424} a^{11} + \frac{79774438078382164061821221520466024107255958234916289581}{5492427286507504502077590722807327691310322706941140681856} a^{10} + \frac{1617977853939629658469537498790988941557355855491202563}{844988813308846846473475495816511952509280416452483181824} a^{9} - \frac{13244712618067516995969881683420754173910842935894341145}{686553410813438062759698840350915961413790338367642585232} a^{8} - \frac{225722729511295738586012398270811546380932490403887645133}{5492427286507504502077590722807327691310322706941140681856} a^{7} - \frac{830048702263591218792392460645703389959370550098529123063}{2746213643253752251038795361403663845655161353470570340928} a^{6} + \frac{1180027547375322105975394360211492887713987741299813622505}{5492427286507504502077590722807327691310322706941140681856} a^{5} - \frac{286910338178253545589578934201718659410215094490854452221}{1373106821626876125519397680701831922827580676735285170464} a^{4} - \frac{112113296771076182297817812734639500528870432330010206875}{686553410813438062759698840350915961413790338367642585232} a^{3} + \frac{157770299290074801549036511326295093770659992708889701039}{343276705406719031379849420175457980706895169183821292616} a^{2} - \frac{10027466120198189673494532999709435843586592727988954579}{85819176351679757844962355043864495176723792295955323154} a - \frac{4729620379138728060701862206824587170687335452386346}{137972952333890285924376776597852886136211884720185407}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68983392448.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times (C_3\times A_4):S_3$ (as 18T156):
| A solvable group of order 432 |
| The 38 conjugacy class representatives for $C_2\times (C_3\times A_4):S_3$ |
| Character table for $C_2\times (C_3\times A_4):S_3$ is not computed |
Intermediate fields
| 3.3.148.1, 6.2.109520.1, 9.9.24551227469320000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.8.2 | $x^{12} + 25 x^{6} - 250 x^{3} + 1250$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $37$ | 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $59$ | 59.3.0.1 | $x^{3} - x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 59.3.0.1 | $x^{3} - x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 59.6.4.2 | $x^{6} - 59 x^{3} + 6962$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 59.6.4.2 | $x^{6} - 59 x^{3} + 6962$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |