Normalized defining polynomial
\( x^{18} - 3 x^{17} - 13 x^{16} + 30 x^{15} - 684 x^{14} - 441 x^{13} - 6520 x^{12} - 28568 x^{11} - 16850 x^{10} - 252408 x^{9} - 269658 x^{8} - 274772 x^{7} - 721353 x^{6} + 4178615 x^{5} + 8506562 x^{4} + 19120631 x^{3} + 27433944 x^{2} + 57979404 x - 14597064 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(747445674816688288211936682840064=2^{12}\cdot 7^{12}\cdot 29^{6}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{582} a^{16} + \frac{93}{194} a^{15} + \frac{161}{582} a^{14} - \frac{29}{97} a^{13} - \frac{22}{97} a^{12} - \frac{87}{194} a^{11} + \frac{106}{291} a^{10} + \frac{11}{291} a^{9} - \frac{73}{291} a^{8} + \frac{6}{97} a^{7} - \frac{43}{97} a^{6} - \frac{13}{291} a^{5} - \frac{57}{194} a^{4} - \frac{31}{582} a^{3} - \frac{95}{291} a^{2} - \frac{151}{582} a - \frac{34}{97}$, $\frac{1}{36085018393603502305925971325784415984471011783830914730565458121372} a^{17} + \frac{592074189748296992248815511014516055895784778218817439332020263}{4009446488178166922880663480642712887163445753758990525618384235708} a^{16} - \frac{10215504385201573206208211889394491743574663656248362262362064737811}{36085018393603502305925971325784415984471011783830914730565458121372} a^{15} + \frac{93087024116830346054420365103146334403455006499435259352937671684}{1002361622044541730720165870160678221790861438439747631404596058927} a^{14} - \frac{34083622581054858341731244024569685593269641853048947065446276021}{1002361622044541730720165870160678221790861438439747631404596058927} a^{13} - \frac{841046970808609645395808701618740803694943417855519362478306916241}{4009446488178166922880663480642712887163445753758990525618384235708} a^{12} + \frac{237895218228990810160250311997229183694976202203056858723384081519}{18042509196801751152962985662892207992235505891915457365282729060686} a^{11} + \frac{453962477905089626643313289879248737612111460394965544582151963874}{9021254598400875576481492831446103996117752945957728682641364530343} a^{10} - \frac{1716776327792337429355223946757545245720080880114910686988958103743}{18042509196801751152962985662892207992235505891915457365282729060686} a^{9} - \frac{371246743157360003480857590021219861709721690918149494520235793319}{1002361622044541730720165870160678221790861438439747631404596058927} a^{8} - \frac{254542233676070471291848727649651256116423747012220090128844434555}{2004723244089083461440331740321356443581722876879495262809192117854} a^{7} - \frac{549571431653655652478986428214396306602686645514939080161820682122}{9021254598400875576481492831446103996117752945957728682641364530343} a^{6} + \frac{1124896460065245881585416372275665332249057878110606935637798786447}{4009446488178166922880663480642712887163445753758990525618384235708} a^{5} + \frac{14984835330264298114002503662589493483147530770052425352066638149305}{36085018393603502305925971325784415984471011783830914730565458121372} a^{4} + \frac{1911655675874322557765779720958695330546883796878400933364397126390}{9021254598400875576481492831446103996117752945957728682641364530343} a^{3} + \frac{4352757178031756755601581740606704128142833784875399685289549555695}{36085018393603502305925971325784415984471011783830914730565458121372} a^{2} - \frac{1640331085902856928709950536447075727591310624710732509845824140709}{6014169732267250384320995220964069330745168630638485788427576353562} a + \frac{78959312977692832228626239688860951602094034506482706560207976034}{1002361622044541730720165870160678221790861438439747631404596058927}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1629568268.27 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 24 conjugacy class representatives for t18n268 |
| Character table for t18n268 is not computed |
Intermediate fields
| 3.3.2597.1, \(\Q(\zeta_{7})^+\), 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.12.10 | $x^{12} - 6 x^{10} + 23 x^{8} - 28 x^{6} - 9 x^{4} - 30 x^{2} - 15$ | $2$ | $6$ | $12$ | 12T58 | $[2, 2, 2, 2]^{6}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $53$ | 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |