Normalized defining polynomial
\( x^{18} - 6 x^{16} - 12 x^{15} + 15 x^{14} + 56 x^{12} + 180 x^{11} - 126 x^{10} - 272 x^{9} - 708 x^{8} - 24 x^{7} + 1956 x^{6} + 384 x^{5} - 1824 x^{4} - 1344 x^{3} + 1152 x^{2} + 2304 x + 768 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7444172137965405517922697216=2^{26}\cdot 3^{21}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{20} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{40} a^{13} + \frac{1}{20} a^{11} - \frac{1}{10} a^{10} - \frac{1}{8} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{9}{20} a^{5} - \frac{1}{10} a^{3} - \frac{2}{5} a^{2} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{80} a^{14} - \frac{1}{40} a^{12} + \frac{1}{20} a^{11} - \frac{9}{80} a^{10} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} - \frac{3}{20} a^{7} + \frac{1}{40} a^{6} + \frac{3}{10} a^{5} - \frac{1}{4} a^{4} - \frac{3}{10} a^{3} + \frac{1}{4} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{800} a^{15} + \frac{1}{200} a^{14} - \frac{1}{80} a^{13} - \frac{1}{40} a^{12} + \frac{63}{800} a^{11} + \frac{23}{200} a^{10} + \frac{41}{200} a^{9} - \frac{27}{200} a^{8} - \frac{47}{400} a^{7} + \frac{1}{20} a^{6} + \frac{29}{200} a^{5} + \frac{29}{100} a^{4} + \frac{61}{200} a^{3} - \frac{3}{50} a^{2} - \frac{7}{50} a - \frac{2}{25}$, $\frac{1}{1600} a^{16} - \frac{3}{800} a^{14} - \frac{1}{80} a^{13} - \frac{17}{1600} a^{12} + \frac{1}{20} a^{11} + \frac{7}{200} a^{10} - \frac{1}{400} a^{9} - \frac{111}{800} a^{8} + \frac{11}{100} a^{7} - \frac{41}{400} a^{6} - \frac{89}{200} a^{5} - \frac{191}{400} a^{4} + \frac{13}{50} a^{3} + \frac{3}{10} a^{2} - \frac{13}{50} a - \frac{6}{25}$, $\frac{1}{78313922610272000} a^{17} + \frac{6583733133653}{39156961305136000} a^{16} + \frac{1331348239651}{7831392261027200} a^{15} + \frac{11000591793709}{2447310081571000} a^{14} + \frac{473056070732623}{78313922610272000} a^{13} - \frac{588070128508581}{39156961305136000} a^{12} + \frac{1240095348675781}{19578480652568000} a^{11} - \frac{237423196171889}{19578480652568000} a^{10} + \frac{1291568099595949}{39156961305136000} a^{9} - \frac{2271461143000611}{19578480652568000} a^{8} + \frac{33541984267361}{1151675332504000} a^{7} + \frac{699571806165649}{4894620163142000} a^{6} + \frac{5056317556621}{230335066500800} a^{5} - \frac{4155982618140187}{9789240326284000} a^{4} + \frac{364330601092107}{978924032628400} a^{3} - \frac{701675434928367}{2447310081571000} a^{2} + \frac{327566080268687}{1223655040785500} a + \frac{26327410880259}{611827520392750}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41801638.6224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_3\wr C_2$ (as 18T150):
| A solvable group of order 432 |
| The 27 conjugacy class representatives for $S_3\times S_3\wr C_2$ |
| Character table for $S_3\times S_3\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.2808.1, 6.6.102503232.1, 6.2.949104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.16.10 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.12.24 | $x^{9} + 3 x^{4} + 3$ | $9$ | $1$ | $12$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ | |
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |