Normalized defining polynomial
\( x^{18} - 5 x^{17} - x^{16} + 50 x^{15} - 235 x^{14} + 376 x^{13} + 800 x^{12} - 2690 x^{11} + 7410 x^{10} - 14085 x^{9} - 3864 x^{8} + 63304 x^{7} - 160451 x^{6} + 115392 x^{5} + 156071 x^{4} - 753228 x^{3} + 1135381 x^{2} - 853458 x + 403481 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74140900471891896178682056546601=7^{13}\cdot 83^{5}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{3}{7} a^{14} - \frac{3}{7} a^{13} + \frac{3}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{14} - \frac{2}{7} a^{13} + \frac{2}{7} a^{12} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{2} - \frac{3}{7}$, $\frac{1}{168745009901793037170579668277639317661892162283509} a^{17} + \frac{2573586743641439973984400685036829148504865484612}{168745009901793037170579668277639317661892162283509} a^{16} + \frac{5415074658732831250548531521645363940401893716813}{168745009901793037170579668277639317661892162283509} a^{15} + \frac{61804259185484860851330097577688866842116565093570}{168745009901793037170579668277639317661892162283509} a^{14} + \frac{83349631615140175233749108567291566769991910106486}{168745009901793037170579668277639317661892162283509} a^{13} + \frac{6542676347236168038360575812182352908010958411948}{168745009901793037170579668277639317661892162283509} a^{12} - \frac{13488661850747916388716645026976311539621407339625}{168745009901793037170579668277639317661892162283509} a^{11} + \frac{84078466221513715538878438138913912075527670859214}{168745009901793037170579668277639317661892162283509} a^{10} + \frac{53203993860239962559520769897944025319176749721336}{168745009901793037170579668277639317661892162283509} a^{9} + \frac{2235872084559485490023765365263447508786705760552}{168745009901793037170579668277639317661892162283509} a^{8} + \frac{38115497664144305774880119665529475667802962197717}{168745009901793037170579668277639317661892162283509} a^{7} - \frac{71207749266218650544391821902048484484719676998849}{168745009901793037170579668277639317661892162283509} a^{6} + \frac{125360440721032026814099533616392003062219169175}{587961706974888631256375150793168354222620774507} a^{5} - \frac{78945270477380274183137365935440549892303122167219}{168745009901793037170579668277639317661892162283509} a^{4} - \frac{21208825676640135448954795956308149923469949238532}{168745009901793037170579668277639317661892162283509} a^{3} + \frac{6746437626368553319072482222427945460267906780975}{168745009901793037170579668277639317661892162283509} a^{2} + \frac{29136135076577941010467005718378550068406096587737}{168745009901793037170579668277639317661892162283509} a - \frac{1026668918947934242003744868592607482720676539818}{4115731948824220418794626055552178479558345421549}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 725773882.856 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $18$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 83 | Data not computed | ||||||
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.4.3.3 | $x^{4} + 362$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |