Normalized defining polynomial
\( x^{18} + 54 x^{16} - 468 x^{14} - 34284 x^{12} + 75357 x^{10} + 2253780 x^{8} + 5534130 x^{6} + 2407509 x^{4} - 3518667 x^{2} - 2476099 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(715444690703398259054531116568150016=2^{18}\cdot 3^{32}\cdot 19^{5}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{57} a^{10} + \frac{16}{57} a^{8} + \frac{7}{57} a^{6} + \frac{11}{57} a^{4} - \frac{16}{57} a^{2} - \frac{1}{3}$, $\frac{1}{57} a^{11} + \frac{16}{57} a^{9} + \frac{7}{57} a^{7} + \frac{11}{57} a^{5} - \frac{16}{57} a^{3} - \frac{1}{3} a$, $\frac{1}{1083} a^{12} - \frac{1}{361} a^{10} - \frac{99}{361} a^{8} + \frac{334}{1083} a^{6} + \frac{1}{361} a^{4} - \frac{2}{19} a^{2} + \frac{1}{3}$, $\frac{1}{1083} a^{13} - \frac{1}{361} a^{11} - \frac{99}{361} a^{9} + \frac{334}{1083} a^{7} + \frac{1}{361} a^{5} - \frac{2}{19} a^{3} + \frac{1}{3} a$, $\frac{1}{20577} a^{14} - \frac{1}{6859} a^{12} + \frac{64}{20577} a^{10} - \frac{4720}{20577} a^{8} - \frac{2885}{20577} a^{6} - \frac{310}{1083} a^{4} + \frac{6}{19} a^{2} - \frac{1}{3}$, $\frac{1}{20577} a^{15} - \frac{1}{6859} a^{13} + \frac{64}{20577} a^{11} - \frac{4720}{20577} a^{9} - \frac{2885}{20577} a^{7} - \frac{310}{1083} a^{5} + \frac{6}{19} a^{3} - \frac{1}{3} a$, $\frac{1}{2052715504137770514321093} a^{16} - \frac{1821877602085487344}{684238501379256838107031} a^{14} - \frac{118277132847296752494}{684238501379256838107031} a^{12} - \frac{4451501098732953787168}{2052715504137770514321093} a^{10} - \frac{526406670487882832118227}{2052715504137770514321093} a^{8} - \frac{19292597520608600964458}{108037658112514237595847} a^{6} + \frac{224528774490783982094}{1895397510745863817471} a^{4} + \frac{9226442536037722334}{299273291170399550127} a^{2} + \frac{2362137662642140835}{15751225851073660533}$, $\frac{1}{2052715504137770514321093} a^{17} - \frac{1821877602085487344}{684238501379256838107031} a^{15} - \frac{118277132847296752494}{684238501379256838107031} a^{13} - \frac{4451501098732953787168}{2052715504137770514321093} a^{11} - \frac{526406670487882832118227}{2052715504137770514321093} a^{9} - \frac{19292597520608600964458}{108037658112514237595847} a^{7} + \frac{224528774490783982094}{1895397510745863817471} a^{5} + \frac{9226442536037722334}{299273291170399550127} a^{3} + \frac{2362137662642140835}{15751225851073660533} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70223252585.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.2349.1, 9.9.1049866478469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.12.17 | $x^{12} + 22 x^{10} + 75 x^{8} - 12 x^{6} - 89 x^{4} + 54 x^{2} - 115$ | $2$ | $6$ | $12$ | 12T29 | $[2, 2]^{12}$ | |
| $3$ | 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
| 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |