Normalized defining polynomial
\( x^{18} + 142 x^{16} + 5949 x^{14} + 17966 x^{12} - 4359003 x^{10} - 99635083 x^{8} - 683133017 x^{6} + 393991011 x^{4} + 12981013942 x^{2} - 1030407817 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(713018177978617901961549930892502499328=2^{18}\cdot 97^{3}\cdot 1129^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{24929} a^{14} - \frac{8588}{24929} a^{12} + \frac{10217}{24929} a^{10} - \frac{3956}{24929} a^{8} + \frac{9683}{24929} a^{6} - \frac{10651}{24929} a^{4} - \frac{8868}{24929} a^{2} + \frac{53}{257}$, $\frac{1}{24929} a^{15} - \frac{8588}{24929} a^{13} + \frac{10217}{24929} a^{11} - \frac{3956}{24929} a^{9} + \frac{9683}{24929} a^{7} - \frac{10651}{24929} a^{5} - \frac{8868}{24929} a^{3} + \frac{53}{257} a$, $\frac{1}{1084867193764600303919616049884769272703} a^{16} + \frac{118600694199346096111814443153741}{83451322597276946455355080760366867131} a^{14} + \frac{269510515767224006849682210391201657285}{1084867193764600303919616049884769272703} a^{12} + \frac{439510376235355050492512400190937299586}{1084867193764600303919616049884769272703} a^{10} + \frac{300786242310674927125277716245256104982}{1084867193764600303919616049884769272703} a^{8} - \frac{40585186665474695030407006647356076832}{1084867193764600303919616049884769272703} a^{6} - \frac{510268103596148248219753013873169639786}{1084867193764600303919616049884769272703} a^{4} - \frac{768379456607349431785927595525835328}{11184197873861858803295010823554322399} a^{2} + \frac{3507682610503390841684518011746494}{115301009008885142302010420861384767}$, $\frac{1}{1084867193764600303919616049884769272703} a^{17} + \frac{118600694199346096111814443153741}{83451322597276946455355080760366867131} a^{15} + \frac{269510515767224006849682210391201657285}{1084867193764600303919616049884769272703} a^{13} + \frac{439510376235355050492512400190937299586}{1084867193764600303919616049884769272703} a^{11} + \frac{300786242310674927125277716245256104982}{1084867193764600303919616049884769272703} a^{9} - \frac{40585186665474695030407006647356076832}{1084867193764600303919616049884769272703} a^{7} - \frac{510268103596148248219753013873169639786}{1084867193764600303919616049884769272703} a^{5} - \frac{768379456607349431785927595525835328}{11184197873861858803295010823554322399} a^{3} + \frac{3507682610503390841684518011746494}{115301009008885142302010420861384767} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1588023584790 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $97$ | 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.3.2 | $x^{6} - 9409 x^{2} + 4563365$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 1129 | Data not computed | ||||||