Normalized defining polynomial
\( x^{18} - 4 x^{17} + 7 x^{16} - 24 x^{15} + 42 x^{14} - 29 x^{13} + 30 x^{12} + 89 x^{11} - 328 x^{10} + 293 x^{9} - 935 x^{8} + 637 x^{7} + 803 x^{6} + 1599 x^{5} - 1616 x^{4} + 4184 x^{3} - 5151 x^{2} + 500 x + 239 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(701972826641672810901485977=7^{15}\cdot 52879^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 52879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3561208941745957512612909868876181} a^{17} - \frac{1005598459302292267566200988923538}{3561208941745957512612909868876181} a^{16} + \frac{515671330887759019841913522632216}{3561208941745957512612909868876181} a^{15} + \frac{376259583582281524126154499745984}{3561208941745957512612909868876181} a^{14} + \frac{1084543637762363463673920926003410}{3561208941745957512612909868876181} a^{13} - \frac{1541136909165201902968660546353039}{3561208941745957512612909868876181} a^{12} + \frac{126059738546039658758332096584697}{3561208941745957512612909868876181} a^{11} - \frac{362752129527864733372301365505558}{3561208941745957512612909868876181} a^{10} + \frac{1404631444734041836457998880915051}{3561208941745957512612909868876181} a^{9} - \frac{268689387681192344829095640430453}{3561208941745957512612909868876181} a^{8} + \frac{1143670782605356641760398219155488}{3561208941745957512612909868876181} a^{7} - \frac{629510795457778576215336566808693}{3561208941745957512612909868876181} a^{6} - \frac{77733316108321158148664803944367}{3561208941745957512612909868876181} a^{5} - \frac{1600333317507451132333899995559256}{3561208941745957512612909868876181} a^{4} - \frac{382012693139085526799524336581712}{3561208941745957512612909868876181} a^{3} + \frac{305694256249733600673215723736365}{3561208941745957512612909868876181} a^{2} + \frac{616234148105891581759902261121643}{3561208941745957512612909868876181} a - \frac{1047398132142097797054171938485282}{3561208941745957512612909868876181}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2862643.89535 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.7.6221161471.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 52879 | Data not computed | ||||||