/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - x^17 - 9*x^16 + 9*x^15 + 34*x^14 - 25*x^13 - 65*x^12 + 16*x^11 + 57*x^10 + 48*x^9 - 18*x^8 - 86*x^7 - 9*x^6 + 49*x^5 + 13*x^4 - 11*x^3 - 5*x^2 + 2*x + 1, 18, 156, [6, 6], 671400859182742683648, [2, 3, 113], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, a^16, 1/4401512201*a^17 - 993700496/4401512201*a^16 + 520061678/4401512201*a^15 + 1634870108/4401512201*a^14 - 1839824742/4401512201*a^13 - 1150499081/4401512201*a^12 - 1738559590/4401512201*a^11 - 1728277712/4401512201*a^10 - 1956567609/4401512201*a^9 - 402730113/4401512201*a^8 - 94546215/4401512201*a^7 - 602420339/4401512201*a^6 + 2148682914/4401512201*a^5 - 1168631155/4401512201*a^4 - 713396241/4401512201*a^3 - 639872099/4401512201*a^2 + 1379945280/4401512201*a + 1476535783/4401512201], 0, 1, [], 0, [ (2922415028)/(4401512201)*a^(17) - (6470487046)/(4401512201)*a^(16) - (21242853435)/(4401512201)*a^(15) + (54796365313)/(4401512201)*a^(14) + (55916271633)/(4401512201)*a^(13) - (164594649137)/(4401512201)*a^(12) - (67617975650)/(4401512201)*a^(11) + (189072622867)/(4401512201)*a^(10) + (56684116406)/(4401512201)*a^(9) + (38889206140)/(4401512201)*a^(8) - (164561770832)/(4401512201)*a^(7) - (159509443101)/(4401512201)*a^(6) + (185060319879)/(4401512201)*a^(5) + (72004440163)/(4401512201)*a^(4) - (57368204102)/(4401512201)*a^(3) - (17975643589)/(4401512201)*a^(2) + (1453909852)/(4401512201)*a + (4993340192)/(4401512201) , (1849961916)/(4401512201)*a^(17) - (1493418787)/(4401512201)*a^(16) - (17070174828)/(4401512201)*a^(15) + (15447433271)/(4401512201)*a^(14) + (64691491931)/(4401512201)*a^(13) - (50157752987)/(4401512201)*a^(12) - (114883664767)/(4401512201)*a^(11) + (57341794232)/(4401512201)*a^(10) + (77442721557)/(4401512201)*a^(9) + (37845662547)/(4401512201)*a^(8) - (10147732432)/(4401512201)*a^(7) - (140547742620)/(4401512201)*a^(6) + (34031225709)/(4401512201)*a^(5) + (87119583797)/(4401512201)*a^(4) - (32311904296)/(4401512201)*a^(3) - (15792778323)/(4401512201)*a^(2) + (987509892)/(4401512201)*a + (3168747113)/(4401512201) , (322721737)/(4401512201)*a^(17) - (2628077586)/(4401512201)*a^(16) - (2459720775)/(4401512201)*a^(15) + (24291513062)/(4401512201)*a^(14) + (6288285894)/(4401512201)*a^(13) - (91637964377)/(4401512201)*a^(12) - (21000592515)/(4401512201)*a^(11) + (154978660937)/(4401512201)*a^(10) + (72621317193)/(4401512201)*a^(9) - (65104826062)/(4401512201)*a^(8) - (145116827898)/(4401512201)*a^(7) - (101348137415)/(4401512201)*a^(6) + (134691623220)/(4401512201)*a^(5) + (113219596987)/(4401512201)*a^(4) - (41070646550)/(4401512201)*a^(3) - (32680561932)/(4401512201)*a^(2) - (2881156326)/(4401512201)*a + (3700785908)/(4401512201) , (3442020796)/(4401512201)*a^(17) - (6210371793)/(4401512201)*a^(16) - (25516684670)/(4401512201)*a^(15) + (50995294946)/(4401512201)*a^(14) + (71771175323)/(4401512201)*a^(13) - (139364650427)/(4401512201)*a^(12) - (95535671352)/(4401512201)*a^(11) + (119957001267)/(4401512201)*a^(10) + (68953826327)/(4401512201)*a^(9) + (116155403527)/(4401512201)*a^(8) - (131422780808)/(4401512201)*a^(7) - (166851355341)/(4401512201)*a^(6) + (103760572854)/(4401512201)*a^(5) + (52281110752)/(4401512201)*a^(4) - (3501213776)/(4401512201)*a^(3) - (20827221666)/(4401512201)*a^(2) - (6759375124)/(4401512201)*a + (5749948654)/(4401512201) , (113772400)/(4401512201)*a^(17) - (1650031353)/(4401512201)*a^(16) - (567564404)/(4401512201)*a^(15) + (14318531496)/(4401512201)*a^(14) - (28253527)/(4401512201)*a^(13) - (50440505559)/(4401512201)*a^(12) - (7713600679)/(4401512201)*a^(11) + (75552526369)/(4401512201)*a^(10) + (45482452509)/(4401512201)*a^(9) - (14359383642)/(4401512201)*a^(8) - (87789978944)/(4401512201)*a^(7) - (57531800563)/(4401512201)*a^(6) + (58458110626)/(4401512201)*a^(5) + (48365755350)/(4401512201)*a^(4) - (1988570592)/(4401512201)*a^(3) - (18219680483)/(4401512201)*a^(2) - (4662663289)/(4401512201)*a + (2744421995)/(4401512201) , (4589434682)/(4401512201)*a^(17) - (9106356154)/(4401512201)*a^(16) - (32555099113)/(4401512201)*a^(15) + (73271366816)/(4401512201)*a^(14) + (84035610800)/(4401512201)*a^(13) - (196832617069)/(4401512201)*a^(12) - (97445901643)/(4401512201)*a^(11) + (164834373750)/(4401512201)*a^(10) + (64138728103)/(4401512201)*a^(9) + (155667822237)/(4401512201)*a^(8) - (184330817408)/(4401512201)*a^(7) - (180870555975)/(4401512201)*a^(6) + (144270534890)/(4401512201)*a^(5) + (33983153738)/(4401512201)*a^(4) - (13867416285)/(4401512201)*a^(3) - (18859197696)/(4401512201)*a^(2) + (8314743744)/(4401512201)*a + (2666959556)/(4401512201) , (10769290)/(4401512201)*a^(17) + (617869872)/(4401512201)*a^(16) - (368869428)/(4401512201)*a^(15) - (6218080559)/(4401512201)*a^(14) + (3446589566)/(4401512201)*a^(13) + (26938816671)/(4401512201)*a^(12) - (9844182325)/(4401512201)*a^(11) - (58577330473)/(4401512201)*a^(10) + (4798504374)/(4401512201)*a^(9) + (57918528213)/(4401512201)*a^(8) + (32618793186)/(4401512201)*a^(7) - (8416364355)/(4401512201)*a^(6) - (73804332793)/(4401512201)*a^(5) - (26755252037)/(4401512201)*a^(4) + (55338070007)/(4401512201)*a^(3) + (12895772684)/(4401512201)*a^(2) - (10413882949)/(4401512201)*a - (4252780208)/(4401512201) , (894460079)/(4401512201)*a^(17) - (1364775608)/(4401512201)*a^(16) - (5979591774)/(4401512201)*a^(15) + (9819929088)/(4401512201)*a^(14) + (14300324403)/(4401512201)*a^(13) - (18424543361)/(4401512201)*a^(12) - (13063259349)/(4401512201)*a^(11) - (5717441633)/(4401512201)*a^(10) + (3436805789)/(4401512201)*a^(9) + (48404140704)/(4401512201)*a^(8) - (24892479836)/(4401512201)*a^(7) - (7682570006)/(4401512201)*a^(6) - (1199223101)/(4401512201)*a^(5) - (11101016668)/(4401512201)*a^(4) + (19623634881)/(4401512201)*a^(3) - (12407293030)/(4401512201)*a^(2) + (3510060616)/(4401512201)*a + (2581247965)/(4401512201) , (4645451150)/(4401512201)*a^(17) - (9137543812)/(4401512201)*a^(16) - (34523900248)/(4401512201)*a^(15) + (76893857955)/(4401512201)*a^(14) + (97323148937)/(4401512201)*a^(13) - (224966148394)/(4401512201)*a^(12) - (135701708547)/(4401512201)*a^(11) + (244431813523)/(4401512201)*a^(10) + (127514441440)/(4401512201)*a^(9) + (81792643738)/(4401512201)*a^(8) - (253817154788)/(4401512201)*a^(7) - (245610901254)/(4401512201)*a^(6) + (224473829343)/(4401512201)*a^(5) + (149312033174)/(4401512201)*a^(4) - (50103247943)/(4401512201)*a^(3) - (66541154216)/(4401512201)*a^(2) + (3553798714)/(4401512201)*a + (9823094660)/(4401512201) , (245199975)/(4401512201)*a^(17) + (1618363188)/(4401512201)*a^(16) - (4529165610)/(4401512201)*a^(15) - (12920377245)/(4401512201)*a^(14) + (27955580936)/(4401512201)*a^(13) + (43117623577)/(4401512201)*a^(12) - (67304807777)/(4401512201)*a^(11) - (71242304512)/(4401512201)*a^(10) + (46530322141)/(4401512201)*a^(9) + (53119358175)/(4401512201)*a^(8) + (70420419983)/(4401512201)*a^(7) - (40656440629)/(4401512201)*a^(6) - (100719626161)/(4401512201)*a^(5) + (30901867728)/(4401512201)*a^(4) + (34191506397)/(4401512201)*a^(3) - (6253785254)/(4401512201)*a^(2) - (622745959)/(4401512201)*a - (3067976610)/(4401512201) , (901471310)/(4401512201)*a^(17) + (545672696)/(4401512201)*a^(16) - (7749365370)/(4401512201)*a^(15) - (4688366375)/(4401512201)*a^(14) + (28220946887)/(4401512201)*a^(13) + (24497513784)/(4401512201)*a^(12) - (40111931269)/(4401512201)*a^(11) - (54118730718)/(4401512201)*a^(10) - (1846349647)/(4401512201)*a^(9) + (41847841714)/(4401512201)*a^(8) + (45521694119)/(4401512201)*a^(7) + (1678755491)/(4401512201)*a^(6) - (34715973642)/(4401512201)*a^(5) + (1728033459)/(4401512201)*a^(4) + (6612375786)/(4401512201)*a^(3) - (18177845639)/(4401512201)*a^(2) + (613555161)/(4401512201)*a + (1346435843)/(4401512201) ], 2219.83808179, [[x^3 - x^2 - x + 4, 1], [x^6 - x^5 + 6*x^3 - 13*x^2 + 12*x - 4, 1], [x^9 - 4*x^8 + 5*x^7 - 6*x^5 + 7*x^4 - x^3 - 3*x^2 + x - 1, 1]]]