Properties

Label 18.6.66675718392...0000.1
Degree $18$
Signature $[6, 6]$
Discriminant $2^{12}\cdot 5^{9}\cdot 11^{6}\cdot 19^{6}$
Root discriminant $21.06$
Ramified primes $2, 5, 11, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_3\times S_3^2$ (as 18T46)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, -8, -19, 16, 10, 28, 88, -70, 111, -112, 14, -10, -34, 26, -15, 10, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 10*x^16 - 15*x^15 + 26*x^14 - 34*x^13 - 10*x^12 + 14*x^11 - 112*x^10 + 111*x^9 - 70*x^8 + 88*x^7 + 28*x^6 + 10*x^5 + 16*x^4 - 19*x^3 - 8*x^2 - 4*x - 1)
 
gp: K = bnfinit(x^18 - 2*x^17 + 10*x^16 - 15*x^15 + 26*x^14 - 34*x^13 - 10*x^12 + 14*x^11 - 112*x^10 + 111*x^9 - 70*x^8 + 88*x^7 + 28*x^6 + 10*x^5 + 16*x^4 - 19*x^3 - 8*x^2 - 4*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 10 x^{16} - 15 x^{15} + 26 x^{14} - 34 x^{13} - 10 x^{12} + 14 x^{11} - 112 x^{10} + 111 x^{9} - 70 x^{8} + 88 x^{7} + 28 x^{6} + 10 x^{5} + 16 x^{4} - 19 x^{3} - 8 x^{2} - 4 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(666757183921928000000000=2^{12}\cdot 5^{9}\cdot 11^{6}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{3}{7} a^{15} + \frac{2}{7} a^{14} + \frac{3}{7} a^{13} + \frac{2}{7} a^{12} - \frac{2}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{81324051706303} a^{17} + \frac{5389805174497}{81324051706303} a^{16} - \frac{38736130503925}{81324051706303} a^{15} - \frac{364087149705}{81324051706303} a^{14} - \frac{1380065826917}{81324051706303} a^{13} - \frac{24033927240628}{81324051706303} a^{12} + \frac{22671611299546}{81324051706303} a^{11} + \frac{4760997911095}{81324051706303} a^{10} - \frac{23615721286811}{81324051706303} a^{9} + \frac{845125662232}{11617721672329} a^{8} - \frac{1393350343067}{11617721672329} a^{7} - \frac{36704428198217}{81324051706303} a^{6} + \frac{17990975066535}{81324051706303} a^{5} + \frac{37335434516280}{81324051706303} a^{4} - \frac{18290141425011}{81324051706303} a^{3} - \frac{32864190265243}{81324051706303} a^{2} - \frac{24070450732201}{81324051706303} a - \frac{36992956410784}{81324051706303}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 80091.8197007 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3^2$ (as 18T46):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 108
The 27 conjugacy class representatives for $C_3\times S_3^2$
Character table for $C_3\times S_3^2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.44.1, 6.6.722000.1, 6.2.242000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$11$11.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
11.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
11.6.3.2$x^{6} - 121 x^{2} + 3993$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
11.6.3.2$x^{6} - 121 x^{2} + 3993$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$19$19.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.6.0.1$x^{6} - x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
19.6.4.2$x^{6} - 19 x^{3} + 722$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$