Normalized defining polynomial
\( x^{18} - 10 x^{16} - 14 x^{15} + 31 x^{14} + 68 x^{13} + 7 x^{12} - 40 x^{11} - 23 x^{10} - 86 x^{9} + \cdots - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[6, 6]$ |
| |
| Discriminant: |
\(6448527633882401509474304\)
\(\medspace = 2^{18}\cdot 101^{7}\cdot 479^{2}\)
|
| |
| Root discriminant: | \(23.89\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(101\), \(479\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{101}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3333}a^{16}-\frac{469}{3333}a^{15}-\frac{1462}{3333}a^{14}-\frac{395}{1111}a^{13}+\frac{698}{3333}a^{12}-\frac{5}{1111}a^{11}-\frac{1354}{3333}a^{10}-\frac{30}{1111}a^{9}-\frac{1291}{3333}a^{8}+\frac{1283}{3333}a^{7}+\frac{823}{3333}a^{6}-\frac{742}{3333}a^{5}+\frac{83}{1111}a^{4}+\frac{1457}{3333}a^{3}-\frac{713}{3333}a^{2}+\frac{41}{1111}a-\frac{1087}{3333}$, $\frac{1}{6052184721}a^{17}-\frac{144308}{6052184721}a^{16}-\frac{58468321}{183399537}a^{15}+\frac{60575984}{550198611}a^{14}-\frac{2620114336}{6052184721}a^{13}+\frac{578742442}{6052184721}a^{12}+\frac{131693779}{550198611}a^{11}+\frac{1779446098}{6052184721}a^{10}-\frac{13482881}{31686831}a^{9}+\frac{24857070}{672464969}a^{8}-\frac{2876652043}{6052184721}a^{7}+\frac{532744642}{6052184721}a^{6}+\frac{27059366}{550198611}a^{5}+\frac{2754959774}{6052184721}a^{4}-\frac{1737138031}{6052184721}a^{3}+\frac{2344463117}{6052184721}a^{2}+\frac{2322256031}{6052184721}a-\frac{1214783213}{6052184721}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{4332994574}{6052184721}a^{17}-\frac{2506145188}{6052184721}a^{16}-\frac{4574138462}{672464969}a^{15}-\frac{37554825499}{6052184721}a^{14}+\frac{149335684150}{6052184721}a^{13}+\frac{205043243978}{6052184721}a^{12}-\frac{60506555291}{6052184721}a^{11}-\frac{10424669900}{550198611}a^{10}-\frac{28507016}{2880621}a^{9}-\frac{117452557055}{2017394907}a^{8}-\frac{491225309852}{6052184721}a^{7}-\frac{180603809503}{6052184721}a^{6}+\frac{724494715}{59922621}a^{5}+\frac{140227017109}{6052184721}a^{4}+\frac{117541760863}{6052184721}a^{3}+\frac{87182688304}{6052184721}a^{2}+\frac{32557954162}{6052184721}a+\frac{415052258}{6052184721}$, $\frac{552179264}{6052184721}a^{17}+\frac{90752368}{550198611}a^{16}-\frac{2212359199}{2017394907}a^{15}-\frac{16975219546}{6052184721}a^{14}+\frac{13714992562}{6052184721}a^{13}+\frac{77474972753}{6052184721}a^{12}+\frac{31803765814}{6052184721}a^{11}-\frac{66656429941}{6052184721}a^{10}-\frac{162488173}{31686831}a^{9}-\frac{3569498223}{672464969}a^{8}-\frac{161430875180}{6052184721}a^{7}-\frac{134093098318}{6052184721}a^{6}+\frac{27845408927}{6052184721}a^{5}+\frac{62814607054}{6052184721}a^{4}+\frac{22578666139}{6052184721}a^{3}+\frac{18812274718}{6052184721}a^{2}+\frac{23536766281}{6052184721}a+\frac{4230157808}{6052184721}$, $a$, $\frac{4730209718}{6052184721}a^{17}-\frac{4849659664}{6052184721}a^{16}-\frac{14334769259}{2017394907}a^{15}-\frac{21335588005}{6052184721}a^{14}+\frac{174347509504}{6052184721}a^{13}+\frac{145187234204}{6052184721}a^{12}-\frac{139280894432}{6052184721}a^{11}-\frac{62691552376}{6052184721}a^{10}-\frac{152484025}{31686831}a^{9}-\frac{125487389506}{2017394907}a^{8}-\frac{358902819749}{6052184721}a^{7}-\frac{20541076156}{6052184721}a^{6}+\frac{94079573585}{6052184721}a^{5}+\frac{102420212695}{6052184721}a^{4}+\frac{69725046454}{6052184721}a^{3}+\frac{49677257023}{6052184721}a^{2}+\frac{6992935222}{6052184721}a-\frac{6410363275}{6052184721}$, $\frac{3442692410}{6052184721}a^{17}-\frac{3260685520}{6052184721}a^{16}-\frac{3610343107}{672464969}a^{15}-\frac{17071734973}{6052184721}a^{14}+\frac{12226420598}{550198611}a^{13}+\frac{119329974419}{6052184721}a^{12}-\frac{130009434428}{6052184721}a^{11}-\frac{816876143}{59922621}a^{10}+\frac{81056123}{31686831}a^{9}-\frac{87139895294}{2017394907}a^{8}-\frac{287487508976}{6052184721}a^{7}+\frac{45946768973}{6052184721}a^{6}+\frac{125714784329}{6052184721}a^{5}+\frac{60023021170}{6052184721}a^{4}+\frac{37342236385}{6052184721}a^{3}+\frac{13433426629}{6052184721}a^{2}-\frac{6337105163}{6052184721}a-\frac{1112852971}{6052184721}$, $\frac{227292503}{2017394907}a^{17}+\frac{137192767}{672464969}a^{16}-\frac{2334985153}{2017394907}a^{15}-\frac{7334208482}{2017394907}a^{14}+\frac{1927519075}{2017394907}a^{13}+\frac{29477149342}{2017394907}a^{12}+\frac{27845154178}{2017394907}a^{11}-\frac{12035655407}{2017394907}a^{10}-\frac{123881827}{10562277}a^{9}-\frac{24207477139}{2017394907}a^{8}-\frac{23122765359}{672464969}a^{7}-\frac{27518065032}{672464969}a^{6}-\frac{25267918091}{2017394907}a^{5}+\frac{19623689959}{2017394907}a^{4}+\frac{8401334642}{672464969}a^{3}+\frac{19218172484}{2017394907}a^{2}+\frac{14137214107}{2017394907}a+\frac{5912720020}{2017394907}$, $\frac{3994871674}{6052184721}a^{17}-\frac{2262409472}{6052184721}a^{16}-\frac{13043388520}{2017394907}a^{15}-\frac{34046954519}{6052184721}a^{14}+\frac{148205619140}{6052184721}a^{13}+\frac{196804947172}{6052184721}a^{12}-\frac{98205668614}{6052184721}a^{11}-\frac{149160920384}{6052184721}a^{10}-\frac{81432050}{31686831}a^{9}-\frac{97848389963}{2017394907}a^{8}-\frac{40810762196}{550198611}a^{7}-\frac{88146329345}{6052184721}a^{6}+\frac{153560193256}{6052184721}a^{5}+\frac{122837628224}{6052184721}a^{4}+\frac{59920902524}{6052184721}a^{3}+\frac{32245701347}{6052184721}a^{2}+\frac{17199661118}{6052184721}a+\frac{3117304837}{6052184721}$, $\frac{1988463424}{6052184721}a^{17}-\frac{1896348944}{6052184721}a^{16}-\frac{6085014877}{2017394907}a^{15}-\frac{10370626340}{6052184721}a^{14}+\frac{73293334511}{6052184721}a^{13}+\frac{67013176306}{6052184721}a^{12}-\frac{55775975608}{6052184721}a^{11}-\frac{34370125571}{6052184721}a^{10}-\frac{54362138}{31686831}a^{9}-\frac{54739967915}{2017394907}a^{8}-\frac{166123206241}{6052184721}a^{7}-\frac{5340302675}{6052184721}a^{6}+\frac{50228034787}{6052184721}a^{5}+\frac{3808595881}{550198611}a^{4}+\frac{4203646174}{550198611}a^{3}+\frac{26219874008}{6052184721}a^{2}-\frac{5458771309}{6052184721}a-\frac{8904532544}{6052184721}$, $\frac{1701310282}{6052184721}a^{17}-\frac{1414826114}{6052184721}a^{16}-\frac{5472134498}{2017394907}a^{15}-\frac{9192064397}{6052184721}a^{14}+\frac{64908771212}{6052184721}a^{13}+\frac{61132677097}{6052184721}a^{12}-\frac{58460236861}{6052184721}a^{11}-\frac{19166711}{5447511}a^{10}-\frac{2876626}{2880621}a^{9}-\frac{17500796942}{672464969}a^{8}-\frac{130541783377}{6052184721}a^{7}-\frac{8977033946}{6052184721}a^{6}+\frac{34996903453}{6052184721}a^{5}+\frac{48461529041}{6052184721}a^{4}+\frac{34363383728}{6052184721}a^{3}+\frac{26849789030}{6052184721}a^{2}+\frac{4802537342}{6052184721}a-\frac{4132744334}{6052184721}$, $\frac{3716747864}{6052184721}a^{17}-\frac{1889996332}{6052184721}a^{16}-\frac{12289685750}{2017394907}a^{15}-\frac{32306767480}{6052184721}a^{14}+\frac{137774206864}{6052184721}a^{13}+\frac{182249779517}{6052184721}a^{12}-\frac{95676023891}{6052184721}a^{11}-\frac{108889065931}{6052184721}a^{10}+\frac{68345108}{31686831}a^{9}-\frac{108280243471}{2017394907}a^{8}-\frac{442239966401}{6052184721}a^{7}-\frac{64699883071}{6052184721}a^{6}+\frac{77119194395}{6052184721}a^{5}+\frac{5036294180}{550198611}a^{4}+\frac{86702716}{5447511}a^{3}+\frac{57936457057}{6052184721}a^{2}+\frac{13032264394}{6052184721}a+\frac{3806516765}{6052184721}$, $\frac{828475484}{6052184721}a^{17}-\frac{476289985}{6052184721}a^{16}-\frac{877404976}{672464969}a^{15}-\frac{6349179778}{6052184721}a^{14}+\frac{27358348828}{6052184721}a^{13}+\frac{32618009612}{6052184721}a^{12}-\frac{112137781}{59922621}a^{11}+\frac{7985168540}{6052184721}a^{10}-\frac{39311158}{31686831}a^{9}-\frac{33106281878}{2017394907}a^{8}-\frac{75377302754}{6052184721}a^{7}-\frac{34413509203}{6052184721}a^{6}-\frac{56878920679}{6052184721}a^{5}+\frac{5729111917}{6052184721}a^{4}+\frac{40513841815}{6052184721}a^{3}+\frac{6015610891}{6052184721}a^{2}+\frac{6279486151}{6052184721}a+\frac{6971085365}{6052184721}$
|
| |
| Regulator: | \( 179188.839877 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 179188.839877 \cdot 2}{2\cdot\sqrt{6448527633882401509474304}}\cr\approx \mathstrut & 0.277868847146 \end{aligned}\]
Galois group
$S_4^3.S_4$ (as 18T884):
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for $S_4^3.S_4$ |
| Character table for $S_4^3.S_4$ |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.4.3088844736629670323038191616.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{5}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.6.18a2.2 | $x^{18} + 6 x^{16} + 6 x^{15} + 15 x^{14} + 30 x^{13} + 35 x^{12} + 60 x^{11} + 75 x^{10} + 80 x^{9} + 96 x^{8} + 90 x^{7} + 78 x^{6} + 66 x^{5} + 51 x^{4} + 30 x^{3} + 19 x^{2} + 12 x + 5$ | $6$ | $3$ | $18$ | 18T270 | $$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}]_{3}^{6}$$ |
|
\(101\)
| 101.1.2.1a1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 101.1.2.1a1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.1.2.1a1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.1.2.1a1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.1.2.1a1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 101.2.2.2a1.2 | $x^{4} + 194 x^{3} + 9413 x^{2} + 388 x + 105$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 101.4.1.0a1.1 | $x^{4} + x^{2} + 78 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(479\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |