Normalized defining polynomial
\( x^{18} - 3 x^{17} + 12 x^{16} - 19 x^{15} - 33 x^{14} + 120 x^{13} - 276 x^{12} + 516 x^{11} - 948 x^{10} + 806 x^{9} - 2505 x^{8} + 3867 x^{7} - 2377 x^{6} + 2646 x^{5} - 72 x^{4} - 642 x^{3} - 108 x^{2} + 36 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64340978779577812500000000=2^{8}\cdot 3^{30}\cdot 5^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{3}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{83745987252811506891887387655246} a^{17} + \frac{3354338197214048338787470019579}{41872993626405753445943693827623} a^{16} - \frac{869082846782361026735677755277}{83745987252811506891887387655246} a^{15} + \frac{46025728583289428714166731761}{2887792663890051961789220263974} a^{14} - \frac{3733548307602431310037421647046}{41872993626405753445943693827623} a^{13} - \frac{13772465700501625765469867483495}{83745987252811506891887387655246} a^{12} - \frac{1783169620949214197698767413260}{13957664542135251148647897942541} a^{11} + \frac{1438271869676310666012010258142}{13957664542135251148647897942541} a^{10} + \frac{4844585294458489033492760773668}{13957664542135251148647897942541} a^{9} - \frac{19128503407074090465257920707875}{41872993626405753445943693827623} a^{8} - \frac{24845771966410306626086501001169}{83745987252811506891887387655246} a^{7} + \frac{15804094173693168880904175831317}{41872993626405753445943693827623} a^{6} + \frac{17739179660871358337947171435741}{41872993626405753445943693827623} a^{5} - \frac{27665775559488423190008758490205}{83745987252811506891887387655246} a^{4} - \frac{596141780427084331309291641079}{41872993626405753445943693827623} a^{3} + \frac{6120023740883440645435780784976}{13957664542135251148647897942541} a^{2} + \frac{152457813905997950674049847981}{13957664542135251148647897942541} a + \frac{2218505545856268720815670068057}{13957664542135251148647897942541}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1849165.3771219314 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.243.1, 6.2.7381125.1, 9.3.143489070000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.10.2 | $x^{6} + 9$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.6.10.2 | $x^{6} + 9$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.6.10.2 | $x^{6} + 9$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.10.2 | $x^{12} + 15 x^{6} + 100$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ |