Normalized defining polynomial
\( x^{18} - 36 x^{16} - 20 x^{15} + 378 x^{14} + 84 x^{13} - 2344 x^{12} + 11868 x^{10} + 1744 x^{9} - 42804 x^{8} - 12504 x^{7} + 103556 x^{6} + 19440 x^{5} - 114528 x^{4} + 22144 x^{3} + 4608 x^{2} + 1536 x - 1024 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6078695067822268102823903232000=2^{26}\cdot 3^{24}\cdot 5^{3}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{64} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{3}{32} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{16} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{3}{64} a^{12} - \frac{3}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{4} a^{9} + \frac{7}{32} a^{8} + \frac{1}{8} a^{7} + \frac{3}{32} a^{6} + \frac{5}{16} a^{5} - \frac{15}{32} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{26021717116271491807518801723470336} a^{17} + \frac{8505649360616556841399513442389}{3252714639533936475939850215433792} a^{16} - \frac{21241659338998438489304680706317}{6505429279067872951879700430867584} a^{15} - \frac{80776249274293295398349469002809}{6505429279067872951879700430867584} a^{14} + \frac{5955785084872958450250959188557}{13010858558135745903759400861735168} a^{13} + \frac{405954070320597242873180700439545}{6505429279067872951879700430867584} a^{12} - \frac{89551432912410764805952435175245}{3252714639533936475939850215433792} a^{11} - \frac{41288717938785003340542264497043}{813178659883484118984962553858448} a^{10} + \frac{1500668177684439964531164327664135}{6505429279067872951879700430867584} a^{9} - \frac{251643010842006684545036507092197}{1626357319766968237969925107716896} a^{8} - \frac{988831511209906575073427807449309}{6505429279067872951879700430867584} a^{7} + \frac{169935604066017190448965714131769}{3252714639533936475939850215433792} a^{6} + \frac{1178487661430740927150255732075777}{6505429279067872951879700430867584} a^{5} + \frac{784028585509526886225938586913181}{1626357319766968237969925107716896} a^{4} - \frac{291000332322471143955505451191277}{813178659883484118984962553858448} a^{3} + \frac{100270532282469720281728229162935}{406589329941742059492481276929224} a^{2} + \frac{3607875065325281381119314164029}{101647332485435514873120319232306} a + \frac{24723505666322002828941657176072}{50823666242717757436560159616153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 578908629.859 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 864 |
| The 40 conjugacy class representatives for t18n228 |
| Character table for t18n228 is not computed |
Intermediate fields
| 3.3.148.1, 6.2.109520.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 37 | Data not computed | ||||||