Normalized defining polynomial
\( x^{18} - x^{17} - 7 x^{16} + 41 x^{15} - 67 x^{14} - 118 x^{13} + 368 x^{12} - 395 x^{11} - 186 x^{10} + 1462 x^{9} - 1040 x^{8} - 1299 x^{7} + 2799 x^{6} + 212 x^{5} - 2903 x^{4} + 1658 x^{3} + 1560 x^{2} - 3345 x - 2309 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60006020121228767347575793=7^{12}\cdot 41^{6}\cdot 97^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{41} a^{16} - \frac{5}{41} a^{15} + \frac{9}{41} a^{14} - \frac{16}{41} a^{13} + \frac{2}{41} a^{12} + \frac{20}{41} a^{11} - \frac{7}{41} a^{10} + \frac{4}{41} a^{9} - \frac{10}{41} a^{8} + \frac{10}{41} a^{7} - \frac{15}{41} a^{6} - \frac{8}{41} a^{5} - \frac{20}{41} a^{4} - \frac{4}{41} a^{3} - \frac{19}{41} a^{2} - \frac{13}{41} a + \frac{7}{41}$, $\frac{1}{12505921508797005169984744926811} a^{17} + \frac{42077762487056890814658843326}{12505921508797005169984744926811} a^{16} - \frac{1516917834515183555452165780077}{12505921508797005169984744926811} a^{15} - \frac{5717645085529502842193779548323}{12505921508797005169984744926811} a^{14} + \frac{2122272245638247781317887463388}{12505921508797005169984744926811} a^{13} + \frac{1458573882481702929047687793416}{12505921508797005169984744926811} a^{12} - \frac{443856172068533437927571849112}{12505921508797005169984744926811} a^{11} + \frac{3127376701171554906217660665956}{12505921508797005169984744926811} a^{10} + \frac{4976418980723192345250938919935}{12505921508797005169984744926811} a^{9} + \frac{3986541349682324884395230005156}{12505921508797005169984744926811} a^{8} - \frac{1577371785190151546614643632950}{12505921508797005169984744926811} a^{7} + \frac{4028417818818550576134035786703}{12505921508797005169984744926811} a^{6} + \frac{2745115841131330032369110675969}{12505921508797005169984744926811} a^{5} + \frac{5899334249150337289598837159430}{12505921508797005169984744926811} a^{4} + \frac{400304809363977444752233352362}{12505921508797005169984744926811} a^{3} + \frac{1386394591125479987073976105610}{12505921508797005169984744926811} a^{2} - \frac{4469736781260492904615798438815}{12505921508797005169984744926811} a + \frac{2426680828684036600307527277687}{12505921508797005169984744926811}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 711722.007002 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.467890073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |