Properties

Label 18.6.60006020121...5793.1
Degree $18$
Signature $[6, 6]$
Discriminant $7^{12}\cdot 41^{6}\cdot 97^{3}$
Root discriminant $27.05$
Ramified primes $7, 41, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T767

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![911, 14295, -26725, 31930, -23714, 8661, 3598, -8486, 8071, -4176, 1175, 291, -553, 351, -117, 15, 9, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 9*x^16 + 15*x^15 - 117*x^14 + 351*x^13 - 553*x^12 + 291*x^11 + 1175*x^10 - 4176*x^9 + 8071*x^8 - 8486*x^7 + 3598*x^6 + 8661*x^5 - 23714*x^4 + 31930*x^3 - 26725*x^2 + 14295*x + 911)
 
gp: K = bnfinit(x^18 - 6*x^17 + 9*x^16 + 15*x^15 - 117*x^14 + 351*x^13 - 553*x^12 + 291*x^11 + 1175*x^10 - 4176*x^9 + 8071*x^8 - 8486*x^7 + 3598*x^6 + 8661*x^5 - 23714*x^4 + 31930*x^3 - 26725*x^2 + 14295*x + 911, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 9 x^{16} + 15 x^{15} - 117 x^{14} + 351 x^{13} - 553 x^{12} + 291 x^{11} + 1175 x^{10} - 4176 x^{9} + 8071 x^{8} - 8486 x^{7} + 3598 x^{6} + 8661 x^{5} - 23714 x^{4} + 31930 x^{3} - 26725 x^{2} + 14295 x + 911 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(60006020121228767347575793=7^{12}\cdot 41^{6}\cdot 97^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 41, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13615571468591013516352061153353903001} a^{17} + \frac{6270001110565582476402440527420573476}{13615571468591013516352061153353903001} a^{16} + \frac{1866918618539731733590439840140625733}{13615571468591013516352061153353903001} a^{15} + \frac{4446761733992672179178314706804784583}{13615571468591013516352061153353903001} a^{14} - \frac{3288372512421389967448988436620498815}{13615571468591013516352061153353903001} a^{13} + \frac{2613902221068827965089878556971109483}{13615571468591013516352061153353903001} a^{12} - \frac{4289932712253674623854613295229549041}{13615571468591013516352061153353903001} a^{11} - \frac{823893891323940565290434310950316180}{13615571468591013516352061153353903001} a^{10} - \frac{2243613890868842259176661430011671980}{13615571468591013516352061153353903001} a^{9} + \frac{4101923927019393532925138382142204350}{13615571468591013516352061153353903001} a^{8} - \frac{2587589554678117017424549932280378913}{13615571468591013516352061153353903001} a^{7} + \frac{3075326637747542175965666479495747552}{13615571468591013516352061153353903001} a^{6} - \frac{3323507485101079103405807005531220013}{13615571468591013516352061153353903001} a^{5} + \frac{5206357344676861067507012692544215321}{13615571468591013516352061153353903001} a^{4} + \frac{1847462225347048093888579821477304467}{13615571468591013516352061153353903001} a^{3} - \frac{4064780784969261919658902085404229155}{13615571468591013516352061153353903001} a^{2} + \frac{824816930972238337428283480486737947}{13615571468591013516352061153353903001} a + \frac{6754044872957682106973718244586536945}{13615571468591013516352061153353903001}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 686792.840853 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T767:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 110 conjugacy class representatives for t18n767 are not computed
Character table for t18n767 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.5.467890073.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ $18$ $18$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
41Data not computed
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.1.2$x^{2} + 485$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$