Normalized defining polynomial
\( x^{18} - 3 x^{17} + 2 x^{16} - 4 x^{15} - 47 x^{14} - 44 x^{13} + 138 x^{12} + 686 x^{11} + 262 x^{10} + 593 x^{9} - 169 x^{8} - 640 x^{7} + 2443 x^{6} + 2473 x^{5} - 2549 x^{4} - 12680 x^{3} + 7834 x^{2} - 7500 x + 5723 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59213367012524597901566561=23^{6}\cdot 43^{3}\cdot 347^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 43, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{61} a^{16} + \frac{22}{61} a^{15} + \frac{6}{61} a^{14} + \frac{29}{61} a^{13} + \frac{25}{61} a^{12} - \frac{3}{61} a^{11} + \frac{16}{61} a^{10} - \frac{21}{61} a^{9} + \frac{29}{61} a^{8} - \frac{26}{61} a^{7} + \frac{14}{61} a^{5} - \frac{13}{61} a^{4} - \frac{6}{61} a^{3} + \frac{7}{61} a^{2} - \frac{18}{61} a + \frac{24}{61}$, $\frac{1}{28783426128751280869124717783338409102177} a^{17} - \frac{172126532705025232366548897333318557460}{28783426128751280869124717783338409102177} a^{16} + \frac{80706740307887056228481676703916976101}{487854680148326794391944369209125578003} a^{15} - \frac{8806310701969430686963135631828227366018}{28783426128751280869124717783338409102177} a^{14} + \frac{211163880411150442476162454583300310575}{471859444733627555231552750546531296757} a^{13} - \frac{5667675964395113210864789499791203776420}{28783426128751280869124717783338409102177} a^{12} - \frac{8950554939795966247174288424051770700014}{28783426128751280869124717783338409102177} a^{11} - \frac{7810322712145365667640135049548362998759}{28783426128751280869124717783338409102177} a^{10} + \frac{8890178274786297113035330104395260020391}{28783426128751280869124717783338409102177} a^{9} + \frac{1496721983660126952961128133502950102121}{28783426128751280869124717783338409102177} a^{8} + \frac{4504447820497096647458919627015072329567}{28783426128751280869124717783338409102177} a^{7} - \frac{13070410648349904548112605602705769195969}{28783426128751280869124717783338409102177} a^{6} + \frac{2893839443872142264683707900930668958280}{28783426128751280869124717783338409102177} a^{5} + \frac{10777499284254606036454905047095311141589}{28783426128751280869124717783338409102177} a^{4} + \frac{7125246266421873266690307695915722905976}{28783426128751280869124717783338409102177} a^{3} - \frac{2751833337533237521259117410891046724198}{28783426128751280869124717783338409102177} a^{2} - \frac{7932244596474386667543547928146290632102}{28783426128751280869124717783338409102177} a - \frac{127552876132670823477093197456781418334}{487854680148326794391944369209125578003}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 669753.254206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 49 conjugacy class representatives for t18n486 |
| Character table for t18n486 is not computed |
Intermediate fields
| 3.1.23.1, 6.2.7893209.3, 9.3.181543807.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||