Normalized defining polynomial
\( x^{18} - 8 x^{15} + 3 x^{14} + 72 x^{13} + 39 x^{12} - 264 x^{11} - 981 x^{10} - 1346 x^{9} + 426 x^{8} + 3240 x^{7} + 3337 x^{6} - 1656 x^{5} - 6876 x^{4} - 2874 x^{3} + 4158 x^{2} + 3348 x + 414 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58887783679914851833002486528=2^{8}\cdot 3^{23}\cdot 367^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{6} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{2}{9} a^{5} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{12} - \frac{1}{3} a^{8} - \frac{5}{18} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3} + \frac{1}{3}$, $\frac{1}{17655502968551698743798} a^{17} + \frac{235978467876406739767}{8827751484275849371899} a^{16} + \frac{73409927944689378236}{8827751484275849371899} a^{15} - \frac{379186765671878977501}{17655502968551698743798} a^{14} - \frac{290266546796605031753}{17655502968551698743798} a^{13} + \frac{16889562608079707039}{410593092291899970786} a^{12} - \frac{223634391023954787811}{1961722552061299860422} a^{11} + \frac{260869697586134272865}{5885167656183899581266} a^{10} - \frac{160384108091317676717}{2942583828091949790633} a^{9} - \frac{94164322440151112728}{8827751484275849371899} a^{8} + \frac{8209787822353728141527}{17655502968551698743798} a^{7} - \frac{2658846060870074109226}{8827751484275849371899} a^{6} - \frac{1550336968876877245073}{8827751484275849371899} a^{5} - \frac{2414781049653090507322}{8827751484275849371899} a^{4} - \frac{2024714217411769151291}{8827751484275849371899} a^{3} - \frac{7116741754852479514}{127938427308345643071} a^{2} - \frac{445137871557769134658}{2942583828091949790633} a - \frac{62828845159262367082}{127938427308345643071}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134490021.472 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 70 conjugacy class representatives for t18n487 are not computed |
| Character table for t18n487 is not computed |
Intermediate fields
| 3.3.1101.1, 6.2.14546412.1, 9.9.35026116351444.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.10.3 | $x^{6} + 36$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.13.6 | $x^{12} + 3 x^{11} + 3 x^{7} + 3 x^{6} + 3 x^{4} + 3 x^{2} - 3$ | $12$ | $1$ | $13$ | 12T35 | $[5/4, 5/4]_{4}^{2}$ | |
| 367 | Data not computed | ||||||