Normalized defining polynomial
\( x^{18} + x^{16} - 11 x^{14} - 52 x^{12} + 84 x^{10} + 241 x^{8} - 61 x^{6} - 131 x^{4} + 58 x^{2} - 5 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(588181867741977804800000=2^{18}\cdot 5^{5}\cdot 23^{4}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{11} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{5} a^{5} - \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{1}{2} a$, $\frac{1}{50} a^{14} - \frac{1}{50} a^{12} - \frac{1}{50} a^{10} + \frac{7}{50} a^{8} + \frac{1}{25} a^{6} + \frac{4}{25} a^{4} - \frac{1}{50} a^{2} - \frac{3}{10}$, $\frac{1}{100} a^{15} - \frac{1}{100} a^{14} + \frac{1}{25} a^{13} + \frac{1}{100} a^{12} - \frac{1}{100} a^{11} + \frac{1}{100} a^{10} + \frac{1}{50} a^{9} - \frac{7}{100} a^{8} - \frac{9}{50} a^{7} + \frac{12}{25} a^{6} - \frac{1}{50} a^{5} + \frac{21}{50} a^{4} + \frac{29}{100} a^{3} - \frac{49}{100} a^{2} + \frac{1}{10} a + \frac{3}{20}$, $\frac{1}{23300} a^{16} + \frac{59}{23300} a^{14} - \frac{1}{20} a^{13} - \frac{254}{5825} a^{12} - \frac{963}{23300} a^{10} + \frac{1}{20} a^{9} + \frac{6907}{23300} a^{8} + \frac{1}{5} a^{7} + \frac{859}{11650} a^{6} + \frac{1}{10} a^{5} + \frac{4519}{23300} a^{4} + \frac{1}{5} a^{3} + \frac{115}{932} a^{2} + \frac{1}{4} a - \frac{327}{932}$, $\frac{1}{23300} a^{17} + \frac{59}{23300} a^{15} - \frac{1}{100} a^{14} - \frac{254}{5825} a^{13} - \frac{1}{25} a^{12} - \frac{963}{23300} a^{11} + \frac{1}{100} a^{10} - \frac{4743}{23300} a^{9} - \frac{1}{50} a^{8} - \frac{2483}{5825} a^{7} + \frac{9}{50} a^{6} + \frac{4519}{23300} a^{5} + \frac{1}{50} a^{4} - \frac{351}{932} a^{3} - \frac{29}{100} a^{2} - \frac{327}{932} a - \frac{1}{10}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 147773.420083 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 192 conjugacy class representatives for t18n882 are not computed |
| Character table for t18n882 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.42872699200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $37$ | 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |