Properties

Label 18.6.57993803448...7717.2
Degree $18$
Signature $[6, 6]$
Discriminant $13^{3}\cdot 1129^{8}$
Root discriminant $34.87$
Ramified primes $13, 1129$
Class number $1$
Class group Trivial
Galois group $C_2\times C_2^2:D_9$ (as 18T67)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![263, -524, -2001, 2938, 3039, -5352, 1768, 3082, -2591, 18, 864, -417, -59, 99, -26, 3, 4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 4*x^16 + 3*x^15 - 26*x^14 + 99*x^13 - 59*x^12 - 417*x^11 + 864*x^10 + 18*x^9 - 2591*x^8 + 3082*x^7 + 1768*x^6 - 5352*x^5 + 3039*x^4 + 2938*x^3 - 2001*x^2 - 524*x + 263)
 
gp: K = bnfinit(x^18 - 2*x^17 + 4*x^16 + 3*x^15 - 26*x^14 + 99*x^13 - 59*x^12 - 417*x^11 + 864*x^10 + 18*x^9 - 2591*x^8 + 3082*x^7 + 1768*x^6 - 5352*x^5 + 3039*x^4 + 2938*x^3 - 2001*x^2 - 524*x + 263, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 4 x^{16} + 3 x^{15} - 26 x^{14} + 99 x^{13} - 59 x^{12} - 417 x^{11} + 864 x^{10} + 18 x^{9} - 2591 x^{8} + 3082 x^{7} + 1768 x^{6} - 5352 x^{5} + 3039 x^{4} + 2938 x^{3} - 2001 x^{2} - 524 x + 263 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5799380344807175895894517717=13^{3}\cdot 1129^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.87$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 1129$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{33} a^{16} + \frac{5}{11} a^{15} + \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{8}{33} a^{12} + \frac{2}{33} a^{11} + \frac{13}{33} a^{10} + \frac{3}{11} a^{9} - \frac{10}{33} a^{8} - \frac{5}{33} a^{7} - \frac{5}{33} a^{6} - \frac{7}{33} a^{5} - \frac{2}{33} a^{4} - \frac{5}{11} a^{3} + \frac{5}{33} a^{2} - \frac{16}{33} a + \frac{5}{33}$, $\frac{1}{271220894658448865965288006047} a^{17} + \frac{2094161222323297921675978310}{271220894658448865965288006047} a^{16} + \frac{15443866824285871634804237953}{90406964886149621988429335349} a^{15} - \frac{41250886378899614195494399933}{90406964886149621988429335349} a^{14} + \frac{3068801257982223373903787363}{24656444968949896905935273277} a^{13} - \frac{30232001091332471854245208304}{271220894658448865965288006047} a^{12} + \frac{123481238020994433902052808697}{271220894658448865965288006047} a^{11} - \frac{3226303832425691021972037065}{24656444968949896905935273277} a^{10} + \frac{35782421273044166360513697911}{271220894658448865965288006047} a^{9} + \frac{117564289632128577210834577151}{271220894658448865965288006047} a^{8} + \frac{30001348281217511616579752936}{90406964886149621988429335349} a^{7} - \frac{11915870263193832950387122784}{271220894658448865965288006047} a^{6} + \frac{79856159101252481464865839658}{271220894658448865965288006047} a^{5} + \frac{1823973787651922921123061902}{7330294450228347728791567731} a^{4} + \frac{48416766180832690980219838475}{271220894658448865965288006047} a^{3} - \frac{2144964455272726135875832691}{8218814989649965635311757759} a^{2} + \frac{2931445811796138991457094119}{8218814989649965635311757759} a - \frac{113536375581805458725723546987}{271220894658448865965288006047}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9741468.33714 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^2:D_9$ (as 18T67):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 18 conjugacy class representatives for $C_2\times C_2^2:D_9$
Character table for $C_2\times C_2^2:D_9$

Intermediate fields

3.3.1129.1, 6.2.16570333.1, 9.9.1624709678881.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
1129Data not computed