Normalized defining polynomial
\( x^{18} - 6 x^{17} + 25 x^{16} - 82 x^{15} + 194 x^{14} - 314 x^{13} - 291 x^{12} + 2174 x^{11} - 3114 x^{10} + 2064 x^{9} - 4153 x^{8} + 10464 x^{7} + 7361 x^{6} - 29038 x^{5} + 46162 x^{4} - 31784 x^{3} + 12108 x^{2} - 788 x - 524 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(570806221123553931507702693888=2^{20}\cdot 3^{9}\cdot 37^{6}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{11} + \frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{11} + \frac{3}{7} a^{10} + \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{14} a^{15} - \frac{1}{14} a^{13} + \frac{3}{7} a^{11} + \frac{2}{7} a^{10} + \frac{5}{14} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{5}{14} a^{5} + \frac{1}{7} a^{4} - \frac{3}{14} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7}$, $\frac{1}{14} a^{16} - \frac{1}{14} a^{14} - \frac{1}{14} a^{10} + \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{7} + \frac{1}{14} a^{6} + \frac{1}{7} a^{5} + \frac{5}{14} a^{4} + \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{5819794247040469230746265054074422012} a^{17} + \frac{45739437347923068874206099026199945}{2909897123520234615373132527037211006} a^{16} - \frac{130772910048482141606720789640266181}{5819794247040469230746265054074422012} a^{15} - \frac{60259134324187412831137186986004023}{1454948561760117307686566263518605503} a^{14} + \frac{53413524352255089732785637606844402}{1454948561760117307686566263518605503} a^{13} - \frac{62508436105062551290336080061895358}{1454948561760117307686566263518605503} a^{12} + \frac{8856424871986050396158342345640551}{831399178148638461535180722010631716} a^{11} - \frac{841333889283741038326050588985889097}{2909897123520234615373132527037211006} a^{10} - \frac{100288814770534306793467824550153711}{207849794537159615383795180502657929} a^{9} + \frac{1263161773235572085143519177089143273}{2909897123520234615373132527037211006} a^{8} - \frac{142602626560102535452822536778090207}{831399178148638461535180722010631716} a^{7} + \frac{478439489197953756986914241266925116}{1454948561760117307686566263518605503} a^{6} + \frac{586815998242513595494813283027689967}{5819794247040469230746265054074422012} a^{5} - \frac{523364341197009266843079799091212627}{1454948561760117307686566263518605503} a^{4} + \frac{283099727634308037362762752121727182}{1454948561760117307686566263518605503} a^{3} - \frac{58709391161089971703662258013968673}{415699589074319230767590361005315858} a^{2} + \frac{665521093832992961020697266974458277}{1454948561760117307686566263518605503} a - \frac{4597670215811966010441264568109647}{207849794537159615383795180502657929}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124138201.097 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 60 conjugacy class representatives for t18n461 are not computed |
| Character table for t18n461 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.564.1, 9.9.9087459412032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.5 | $x^{12} - 12 x^{10} + 69 x^{8} - 104 x^{6} + 35 x^{4} + 52 x^{2} + 23$ | $6$ | $2$ | $16$ | 12T50 | $[4/3, 4/3, 2, 2]_{3}^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $47$ | 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 47.6.3.1 | $x^{6} - 94 x^{4} + 2209 x^{2} - 415292$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.1 | $x^{6} - 94 x^{4} + 2209 x^{2} - 415292$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |