Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 36 x^{15} + 101 x^{14} - 229 x^{13} + 498 x^{12} - 765 x^{11} + 930 x^{10} - 345 x^{9} - 1994 x^{8} + 7647 x^{7} - 18390 x^{6} + 33475 x^{5} - 47255 x^{4} + 49166 x^{3} - 37440 x^{2} + 18499 x - 3991 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54498357372899208270500089=7^{12}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{11} - \frac{1}{4} a^{10} + \frac{1}{6} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{6} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{5}{12} a^{2} - \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{60} a^{13} - \frac{1}{60} a^{12} - \frac{1}{12} a^{11} + \frac{11}{60} a^{10} + \frac{13}{60} a^{9} - \frac{1}{20} a^{8} + \frac{11}{60} a^{7} + \frac{1}{60} a^{6} + \frac{1}{4} a^{5} + \frac{11}{60} a^{4} + \frac{1}{20} a^{3} + \frac{29}{60} a^{2} - \frac{19}{60} a - \frac{17}{60}$, $\frac{1}{60} a^{14} - \frac{1}{60} a^{12} - \frac{1}{15} a^{11} + \frac{3}{20} a^{10} - \frac{1}{6} a^{9} + \frac{1}{20} a^{8} + \frac{1}{30} a^{7} - \frac{3}{20} a^{6} - \frac{1}{15} a^{5} - \frac{1}{60} a^{4} - \frac{3}{10} a^{3} - \frac{1}{4} a^{2} - \frac{4}{15} a - \frac{1}{5}$, $\frac{1}{60} a^{15} - \frac{1}{10} a^{11} - \frac{7}{30} a^{10} - \frac{1}{15} a^{9} - \frac{1}{10} a^{8} - \frac{2}{15} a^{7} + \frac{1}{30} a^{6} + \frac{7}{30} a^{5} + \frac{2}{15} a^{4} + \frac{7}{15} a^{3} + \frac{3}{10} a^{2} + \frac{19}{60} a + \frac{3}{10}$, $\frac{1}{66540} a^{16} - \frac{67}{13308} a^{15} + \frac{33}{4436} a^{14} - \frac{5}{1109} a^{13} + \frac{863}{22180} a^{12} - \frac{1106}{16635} a^{11} - \frac{1703}{22180} a^{10} + \frac{2111}{16635} a^{9} - \frac{1763}{66540} a^{8} - \frac{69}{5545} a^{7} - \frac{7301}{66540} a^{6} + \frac{2999}{33270} a^{5} + \frac{6361}{22180} a^{4} + \frac{3982}{16635} a^{3} - \frac{11593}{33270} a^{2} + \frac{21913}{66540} a + \frac{53}{1109}$, $\frac{1}{27322115394298367511300} a^{17} - \frac{129732986973149077}{27322115394298367511300} a^{16} - \frac{763364174240855891}{4553685899049727918550} a^{15} - \frac{2378929975588267521}{2276842949524863959275} a^{14} + \frac{50792463629659660573}{9107371798099455837100} a^{13} - \frac{186722928074875964573}{5464423078859673502260} a^{12} - \frac{5013632658847732711507}{27322115394298367511300} a^{11} + \frac{340581106841455422193}{27322115394298367511300} a^{10} - \frac{703744088232988181849}{9107371798099455837100} a^{9} - \frac{1268605176793983001459}{9107371798099455837100} a^{8} + \frac{4230983467545533748499}{27322115394298367511300} a^{7} + \frac{2593204979361673092391}{27322115394298367511300} a^{6} + \frac{6821080853792939991551}{27322115394298367511300} a^{5} + \frac{10008239009375368361141}{27322115394298367511300} a^{4} - \frac{742752420413895464827}{2276842949524863959275} a^{3} - \frac{1950480001097108827303}{4553685899049727918550} a^{2} + \frac{3484842590158632634237}{27322115394298367511300} a + \frac{550895166619022887531}{27322115394298367511300}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1529227.92476 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times A_4$ (as 18T8):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $A_4 \times C_3$ |
| Character table for $A_4 \times C_3$ |
Intermediate fields
| 3.3.8281.2, 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 6.2.405769.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |