Normalized defining polynomial
\( x^{18} - 5 x^{17} + 9 x^{16} - 6 x^{15} - 19 x^{14} + 71 x^{13} - 117 x^{12} + 135 x^{11} - 70 x^{10} - 84 x^{9} + 177 x^{8} - 123 x^{7} - 51 x^{6} + 135 x^{5} - 33 x^{4} - 25 x^{3} + 11 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5425784582792000000000=2^{12}\cdot 5^{9}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{71} a^{16} + \frac{8}{71} a^{15} - \frac{18}{71} a^{14} - \frac{10}{71} a^{13} + \frac{8}{71} a^{12} - \frac{6}{71} a^{11} + \frac{35}{71} a^{10} + \frac{27}{71} a^{9} + \frac{27}{71} a^{8} - \frac{4}{71} a^{7} - \frac{4}{71} a^{6} - \frac{6}{71} a^{5} - \frac{31}{71} a^{4} + \frac{21}{71} a^{3} - \frac{30}{71} a^{2} + \frac{29}{71} a - \frac{13}{71}$, $\frac{1}{22182208010101} a^{17} + \frac{151664709536}{22182208010101} a^{16} + \frac{9650096508899}{22182208010101} a^{15} - \frac{9676953003084}{22182208010101} a^{14} - \frac{10411667037479}{22182208010101} a^{13} - \frac{4793278724366}{22182208010101} a^{12} + \frac{3602201010574}{22182208010101} a^{11} + \frac{4773758414474}{22182208010101} a^{10} + \frac{3162781026185}{22182208010101} a^{9} - \frac{6561253702937}{22182208010101} a^{8} - \frac{4992331982919}{22182208010101} a^{7} + \frac{1003279965773}{22182208010101} a^{6} + \frac{9467454354780}{22182208010101} a^{5} + \frac{2822276462171}{22182208010101} a^{4} - \frac{10939288680720}{22182208010101} a^{3} - \frac{1820685470348}{22182208010101} a^{2} - \frac{2902349174430}{22182208010101} a + \frac{4898940833974}{22182208010101}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6358.139706194206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 3.1.140.1, 6.2.98000.1, 6.6.300125.1, 9.3.6588344000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |