Normalized defining polynomial
\( x^{18} - 6 x^{17} + 6 x^{16} + 12 x^{15} - 15 x^{14} + 36 x^{13} - 147 x^{12} + 324 x^{11} - 618 x^{10} + 1090 x^{9} - 1347 x^{8} + 1044 x^{7} - 888 x^{6} + 516 x^{5} + 240 x^{4} - 288 x^{3} + 24 x^{2} - 96 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54226471004352000000000000=2^{18}\cdot 3^{25}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{20} a^{12} - \frac{3}{20} a^{10} - \frac{1}{5} a^{8} + \frac{3}{20} a^{6} - \frac{9}{20} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{20} a^{13} - \frac{3}{20} a^{11} - \frac{1}{5} a^{9} + \frac{3}{20} a^{7} - \frac{9}{20} a^{5} - \frac{2}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{20} a^{14} - \frac{3}{20} a^{10} + \frac{1}{20} a^{8} - \frac{1}{4} a^{4} + \frac{1}{10} a^{2} + \frac{2}{5}$, $\frac{1}{40} a^{15} - \frac{1}{40} a^{14} - \frac{1}{40} a^{13} - \frac{1}{40} a^{12} - \frac{1}{10} a^{10} - \frac{1}{8} a^{9} + \frac{3}{40} a^{8} + \frac{7}{40} a^{7} - \frac{3}{40} a^{6} + \frac{7}{20} a^{5} + \frac{7}{20} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{80} a^{16} - \frac{1}{80} a^{15} - \frac{1}{80} a^{14} + \frac{1}{80} a^{13} + \frac{1}{8} a^{11} + \frac{3}{16} a^{10} - \frac{1}{16} a^{9} + \frac{7}{80} a^{8} - \frac{17}{80} a^{7} - \frac{3}{40} a^{6} - \frac{3}{10} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} + \frac{1}{10} a$, $\frac{1}{978423513875572640} a^{17} - \frac{5595808353566917}{978423513875572640} a^{16} - \frac{736352582274521}{978423513875572640} a^{15} - \frac{10394694656543667}{978423513875572640} a^{14} - \frac{380437584677928}{30575734808611645} a^{13} - \frac{6000537655107463}{489211756937786320} a^{12} - \frac{186491373124184577}{978423513875572640} a^{11} + \frac{18056452618417787}{195684702775114528} a^{10} + \frac{107522084272602111}{978423513875572640} a^{9} - \frac{229653119070913309}{978423513875572640} a^{8} + \frac{14458852455434433}{489211756937786320} a^{7} + \frac{21668089681363033}{122302939234446580} a^{6} - \frac{40327198637103849}{244605878468893160} a^{5} + \frac{59455305338498643}{122302939234446580} a^{4} - \frac{4889029537938375}{24460587846889316} a^{3} - \frac{17233030004832603}{122302939234446580} a^{2} + \frac{105550035880253}{353476702989730} a + \frac{13142313009412571}{30575734808611645}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14377045.320330542 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.1.675.1, 3.3.2700.1 x3, 6.2.87480000.1, 6.6.87480000.1, 9.3.531441000000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |