Normalized defining polynomial
\( x^{18} - 18 x^{16} - 4 x^{15} + 126 x^{14} + 54 x^{13} - 493 x^{12} - 432 x^{11} + 762 x^{10} + 876 x^{9} - 846 x^{8} - 1302 x^{7} + 941 x^{6} + 1710 x^{5} - 840 x^{4} - 1216 x^{3} + 432 x^{2} + 288 x - 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53321094333449969673424896=2^{12}\cdot 3^{18}\cdot 23^{6}\cdot 61^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{7} - \frac{1}{3} a^{4} - \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{5}{12} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{72} a^{15} - \frac{1}{12} a^{13} + \frac{1}{18} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{29}{72} a^{9} - \frac{1}{4} a^{7} - \frac{1}{18} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{9}$, $\frac{1}{144} a^{16} - \frac{1}{24} a^{14} + \frac{1}{36} a^{13} + \frac{1}{24} a^{12} + \frac{3}{8} a^{11} + \frac{43}{144} a^{10} - \frac{1}{2} a^{9} - \frac{1}{8} a^{8} + \frac{17}{36} a^{7} + \frac{7}{24} a^{6} - \frac{3}{8} a^{5} - \frac{3}{16} a^{4} + \frac{1}{24} a^{3} - \frac{1}{12} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{3043386844167198240} a^{17} - \frac{1041740806574351}{760846711041799560} a^{16} + \frac{536523859607633}{507231140694533040} a^{15} - \frac{8967682768758779}{760846711041799560} a^{14} + \frac{2483511110021659}{304338684416719824} a^{13} - \frac{57142990840382531}{507231140694533040} a^{12} + \frac{925760663117482651}{3043386844167198240} a^{11} - \frac{327247417229336069}{760846711041799560} a^{10} + \frac{26347197702443417}{169077046898177680} a^{9} - \frac{375699475788641827}{760846711041799560} a^{8} - \frac{10518977771245487}{1521693422083599120} a^{7} - \frac{220954436579305181}{507231140694533040} a^{6} - \frac{77520907754671381}{202892456277813216} a^{5} - \frac{10192208598966451}{33815409379635536} a^{4} - \frac{3425805902046749}{25361557034726652} a^{3} - \frac{17198151490375381}{190211677760449890} a^{2} - \frac{39300954125378087}{95105838880224945} a + \frac{5968657135624694}{31701946293408315}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 645759.782827 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 864 |
| The 40 conjugacy class representatives for t18n228 |
| Character table for t18n228 is not computed |
Intermediate fields
| 3.1.23.1, 6.2.32269.1, 9.3.15326915904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $61$ | 61.6.0.1 | $x^{6} - 4 x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 61.6.0.1 | $x^{6} - 4 x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |