Normalized defining polynomial
\( x^{18} - 9 x^{16} - 24 x^{15} - 54 x^{14} - 90 x^{13} - 36 x^{12} + 180 x^{11} + 171 x^{10} + 40 x^{9} + 9 x^{8} + 126 x^{7} - 453 x^{6} - 72 x^{5} + 171 x^{4} + 378 x^{3} - 261 x^{2} - 90 x + 37 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52370069148219691512889344=2^{18}\cdot 3^{36}\cdot 11^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{26} a^{15} - \frac{3}{13} a^{14} + \frac{1}{26} a^{13} + \frac{5}{26} a^{12} + \frac{5}{26} a^{11} + \frac{3}{13} a^{10} - \frac{1}{26} a^{9} - \frac{3}{26} a^{8} - \frac{2}{13} a^{7} + \frac{3}{26} a^{6} - \frac{5}{13} a^{5} + \frac{7}{26} a^{4} - \frac{1}{2} a^{3} - \frac{3}{13} a^{2} - \frac{3}{26} a + \frac{3}{13}$, $\frac{1}{3796} a^{16} + \frac{12}{949} a^{15} - \frac{136}{949} a^{14} - \frac{393}{1898} a^{13} - \frac{58}{949} a^{12} - \frac{35}{949} a^{11} + \frac{110}{949} a^{10} + \frac{381}{1898} a^{9} + \frac{263}{3796} a^{8} + \frac{693}{1898} a^{7} + \frac{193}{1898} a^{6} - \frac{69}{146} a^{5} - \frac{987}{3796} a^{4} - \frac{47}{949} a^{3} - \frac{235}{1898} a^{2} + \frac{19}{73} a - \frac{105}{3796}$, $\frac{1}{1306436691293502028} a^{17} + \frac{153813287570291}{1306436691293502028} a^{16} - \frac{1853262445786202}{326609172823375507} a^{15} - \frac{33710658802418015}{653218345646751014} a^{14} + \frac{137204457585262281}{653218345646751014} a^{13} + \frac{4155387986894184}{25123782524875039} a^{12} + \frac{154600478177556247}{653218345646751014} a^{11} - \frac{58102526457479314}{326609172823375507} a^{10} + \frac{160102061464051795}{1306436691293502028} a^{9} + \frac{3188617275839229}{100495130099500156} a^{8} - \frac{151421487251786179}{653218345646751014} a^{7} + \frac{306322641387391775}{653218345646751014} a^{6} + \frac{206384755929114219}{1306436691293502028} a^{5} + \frac{317398090439883291}{1306436691293502028} a^{4} + \frac{20681034589793961}{653218345646751014} a^{3} + \frac{100497182706507415}{653218345646751014} a^{2} - \frac{23695024858187963}{76849217134911884} a - \frac{313299932034105}{2716084597283788}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1406421.43532 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3\wr C_2$ (as 18T93):
| A solvable group of order 216 |
| The 27 conjugacy class representatives for $C_3\times S_3\wr C_2$ |
| Character table for $C_3\times S_3\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{36})^+\), 6.2.41570496.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |