Normalized defining polynomial
\( x^{18} - x^{16} - 6 x^{14} + 5 x^{12} + 2 x^{10} - 7 x^{8} + 18 x^{6} - 7 x^{4} - 3 x^{2} - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(523104597390400000000=2^{12}\cdot 5^{8}\cdot 83^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{6} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{582} a^{16} - \frac{7}{194} a^{14} - \frac{1}{6} a^{13} - \frac{71}{582} a^{12} - \frac{1}{3} a^{11} + \frac{82}{291} a^{10} + \frac{1}{3} a^{9} + \frac{10}{291} a^{8} - \frac{1}{3} a^{7} - \frac{71}{194} a^{6} - \frac{1}{3} a^{5} - \frac{92}{291} a^{4} + \frac{1}{6} a^{3} + \frac{14}{97} a^{2} - \frac{1}{6} a - \frac{131}{582}$, $\frac{1}{582} a^{17} - \frac{7}{194} a^{15} - \frac{1}{6} a^{14} - \frac{71}{582} a^{13} + \frac{82}{291} a^{11} + \frac{10}{291} a^{9} - \frac{71}{194} a^{7} + \frac{1}{3} a^{6} - \frac{92}{291} a^{5} - \frac{1}{6} a^{4} + \frac{14}{97} a^{3} - \frac{1}{2} a^{2} - \frac{131}{582} a + \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1833.2983103 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_3\times A_4):S_3$ (as 18T108):
| A solvable group of order 216 |
| The 19 conjugacy class representatives for $(C_3\times A_4):S_3$ |
| Character table for $(C_3\times A_4):S_3$ |
Intermediate fields
| 3.1.83.1, 6.2.110224.1, 9.3.357366875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.12.8.2 | $x^{12} + 25 x^{6} - 250 x^{3} + 1250$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $83$ | 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 83.12.6.1 | $x^{12} + 38881516 x^{6} - 3939040643 x^{2} + 377943071614564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |