# SageMath code for working with number field 18.6.51624177137754227336536682168566437749832086648167693412837925000000000000.1. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^18 - 6*x^17 - 79635*x^16 + 726016*x^15 - 21346492116*x^14 + 262385243232*x^13 - 222640923218036*x^12 + 5287125117175824*x^11 + 36115874586042869742*x^10 - 315574620417688738476*x^9 + 1064246929788629129834742*x^8 - 10094756489315953842318336*x^7 + 5555830520763339794029338844*x^6 - 66983200453112231194458550608*x^5 - 95464018377851901223533667416996*x^4 + 244705662148773213221767445905616*x^3 - 887010722785755909642099142950505815*x^2 + 1957760134295180518228084208239496514*x - 371023633673372769266300083152445623019) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^18 - 6*x^17 - 79635*x^16 + 726016*x^15 - 21346492116*x^14 + 262385243232*x^13 - 222640923218036*x^12 + 5287125117175824*x^11 + 36115874586042869742*x^10 - 315574620417688738476*x^9 + 1064246929788629129834742*x^8 - 10094756489315953842318336*x^7 + 5555830520763339794029338844*x^6 - 66983200453112231194458550608*x^5 - 95464018377851901223533667416996*x^4 + 244705662148773213221767445905616*x^3 - 887010722785755909642099142950505815*x^2 + 1957760134295180518228084208239496514*x - 371023633673372769266300083152445623019) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]