# Oscar code for working with number field 18.6.51624177137754227336536682168566437749832086648167693412837925000000000000.1. # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 - 79635*x^16 + 726016*x^15 - 21346492116*x^14 + 262385243232*x^13 - 222640923218036*x^12 + 5287125117175824*x^11 + 36115874586042869742*x^10 - 315574620417688738476*x^9 + 1064246929788629129834742*x^8 - 10094756489315953842318336*x^7 + 5555830520763339794029338844*x^6 - 66983200453112231194458550608*x^5 - 95464018377851901223533667416996*x^4 + 244705662148773213221767445905616*x^3 - 887010722785755909642099142950505815*x^2 + 1957760134295180518228084208239496514*x - 371023633673372769266300083152445623019) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 - 79635*x^16 + 726016*x^15 - 21346492116*x^14 + 262385243232*x^13 - 222640923218036*x^12 + 5287125117175824*x^11 + 36115874586042869742*x^10 - 315574620417688738476*x^9 + 1064246929788629129834742*x^8 - 10094756489315953842318336*x^7 + 5555830520763339794029338844*x^6 - 66983200453112231194458550608*x^5 - 95464018377851901223533667416996*x^4 + 244705662148773213221767445905616*x^3 - 887010722785755909642099142950505815*x^2 + 1957760134295180518228084208239496514*x - 371023633673372769266300083152445623019); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]