\\ Pari/GP code for working with number field 18.6.51624177137754227336536682168566437749832086648167693412837925000000000000.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 6*y^17 - 79635*y^16 + 726016*y^15 - 21346492116*y^14 + 262385243232*y^13 - 222640923218036*y^12 + 5287125117175824*y^11 + 36115874586042869742*y^10 - 315574620417688738476*y^9 + 1064246929788629129834742*y^8 - 10094756489315953842318336*y^7 + 5555830520763339794029338844*y^6 - 66983200453112231194458550608*y^5 - 95464018377851901223533667416996*y^4 + 244705662148773213221767445905616*y^3 - 887010722785755909642099142950505815*y^2 + 1957760134295180518228084208239496514*y - 371023633673372769266300083152445623019, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 6*x^17 - 79635*x^16 + 726016*x^15 - 21346492116*x^14 + 262385243232*x^13 - 222640923218036*x^12 + 5287125117175824*x^11 + 36115874586042869742*x^10 - 315574620417688738476*x^9 + 1064246929788629129834742*x^8 - 10094756489315953842318336*x^7 + 5555830520763339794029338844*x^6 - 66983200453112231194458550608*x^5 - 95464018377851901223533667416996*x^4 + 244705662148773213221767445905616*x^3 - 887010722785755909642099142950505815*x^2 + 1957760134295180518228084208239496514*x - 371023633673372769266300083152445623019, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])