Normalized defining polynomial
\( x^{18} - 7 x^{17} + 4 x^{16} + 88 x^{15} - 266 x^{14} + 172 x^{13} + 249 x^{12} - 346 x^{11} + 2822 x^{10} - 14684 x^{9} + 25880 x^{8} - 4048 x^{7} - 34631 x^{6} + 18181 x^{5} + 31875 x^{4} - 8371 x^{3} - 44378 x^{2} + 5649 x + 23449 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5134817669464957567736268529133=17^{8}\cdot 41^{6}\cdot 173^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 41, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{51} a^{14} - \frac{2}{17} a^{13} - \frac{2}{17} a^{12} - \frac{3}{17} a^{11} - \frac{2}{51} a^{10} - \frac{11}{51} a^{9} - \frac{1}{3} a^{8} - \frac{13}{51} a^{7} + \frac{3}{17} a^{6} - \frac{14}{51} a^{5} + \frac{23}{51} a^{4} - \frac{19}{51} a^{3} - \frac{7}{51} a^{2} + \frac{2}{51} a - \frac{2}{17}$, $\frac{1}{1173} a^{15} + \frac{2}{391} a^{14} - \frac{44}{1173} a^{13} + \frac{58}{391} a^{12} - \frac{467}{1173} a^{11} - \frac{86}{1173} a^{10} - \frac{166}{1173} a^{9} + \frac{7}{391} a^{8} + \frac{295}{1173} a^{7} - \frac{116}{391} a^{6} - \frac{196}{1173} a^{5} + \frac{182}{391} a^{4} - \frac{524}{1173} a^{3} - \frac{473}{1173} a^{2} + \frac{443}{1173} a + \frac{47}{1173}$, $\frac{1}{1173} a^{16} - \frac{11}{1173} a^{14} + \frac{8}{391} a^{13} + \frac{10}{391} a^{12} + \frac{177}{391} a^{11} - \frac{179}{1173} a^{10} - \frac{133}{1173} a^{9} + \frac{560}{1173} a^{8} + \frac{168}{391} a^{7} - \frac{224}{1173} a^{6} - \frac{139}{391} a^{5} + \frac{133}{1173} a^{4} - \frac{4}{23} a^{3} + \frac{452}{1173} a^{2} + \frac{88}{391} a + \frac{86}{1173}$, $\frac{1}{70239818651318461946281786723605} a^{17} + \frac{2580497016344234940479824963}{14047963730263692389256357344721} a^{16} - \frac{402095243158140137035699421}{1377251346104283567574152680855} a^{15} - \frac{246990210234653053862642463074}{70239818651318461946281786723605} a^{14} + \frac{3063800537728432971614760373217}{23413272883772820648760595574535} a^{13} + \frac{6843389192214759707603254499549}{70239818651318461946281786723605} a^{12} - \frac{7640620681086091615406242519018}{70239818651318461946281786723605} a^{11} + \frac{31404339691334111229992936468158}{70239818651318461946281786723605} a^{10} + \frac{121573669452954606518012756514}{263070481840144052233265118815} a^{9} + \frac{26613856487390061194168932174082}{70239818651318461946281786723605} a^{8} - \frac{381953826024565540037157531536}{6385438059210769267843798793055} a^{7} + \frac{6328564767691470188009198874}{425695870614051284522919919537} a^{6} + \frac{18044376434323012208966047596274}{70239818651318461946281786723605} a^{5} - \frac{1930840845643165659841753983973}{4131754038312850702722458042565} a^{4} - \frac{3825146180088693809318717765759}{23413272883772820648760595574535} a^{3} + \frac{123872377213339508520033544042}{4682654576754564129752119114907} a^{2} + \frac{28918105910604947701048290084517}{70239818651318461946281786723605} a + \frac{8228336084236435297985906457266}{23413272883772820648760595574535}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 525662243.024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 70 conjugacy class representatives for t18n396 are not computed |
| Character table for t18n396 is not computed |
Intermediate fields
| 3.3.697.1, 6.2.84044957.1, 9.9.172281824320289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $173$ | 173.6.5.2 | $x^{6} + 346$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 173.12.0.1 | $x^{12} - x + 111$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ |