Normalized defining polynomial
\( x^{18} - 17 x^{16} - 8 x^{15} + 208 x^{14} + 316 x^{13} - 1061 x^{12} - 3268 x^{11} - 790 x^{10} + 6297 x^{9} + 5218 x^{8} - 3756 x^{7} - 3892 x^{6} + 6915 x^{5} + 11174 x^{4} + 5260 x^{3} - 60 x^{2} - 671 x - 121 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(504577458849157680066569739857=17^{9}\cdot 41^{6}\cdot 173^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 41, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{5}{11} a^{12} + \frac{4}{11} a^{11} - \frac{2}{11} a^{10} + \frac{2}{11} a^{9} + \frac{1}{11} a^{8} - \frac{2}{11} a^{7} - \frac{1}{11} a^{6} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{4}{11} a^{3} + \frac{5}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{11} a^{14} + \frac{1}{11} a^{12} + \frac{1}{11} a^{10} + \frac{2}{11} a^{9} + \frac{4}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{4}{11} a^{5} - \frac{3}{11} a^{4} - \frac{4}{11} a^{3} + \frac{3}{11} a^{2} + \frac{3}{11} a$, $\frac{1}{33} a^{15} - \frac{1}{33} a^{14} + \frac{1}{33} a^{13} - \frac{1}{33} a^{12} + \frac{4}{11} a^{11} + \frac{4}{11} a^{10} - \frac{3}{11} a^{9} + \frac{5}{33} a^{8} - \frac{2}{11} a^{7} + \frac{4}{33} a^{6} - \frac{10}{33} a^{5} - \frac{4}{11} a^{4} + \frac{7}{33} a^{3} - \frac{1}{3} a^{2} - \frac{1}{11} a - \frac{1}{3}$, $\frac{1}{561} a^{16} + \frac{2}{187} a^{15} - \frac{8}{187} a^{14} + \frac{5}{187} a^{13} - \frac{166}{561} a^{12} - \frac{1}{17} a^{11} - \frac{86}{187} a^{10} + \frac{122}{561} a^{9} - \frac{133}{561} a^{8} - \frac{53}{561} a^{7} - \frac{70}{187} a^{6} + \frac{10}{33} a^{5} - \frac{149}{561} a^{4} - \frac{184}{561} a^{3} + \frac{208}{561} a^{2} - \frac{98}{561} a - \frac{22}{51}$, $\frac{1}{1395277594345073803207907283} a^{17} + \frac{1105231828463084796482381}{1395277594345073803207907283} a^{16} - \frac{615175150187375620775423}{126843417667733982109809753} a^{15} - \frac{48504976204764730584228044}{1395277594345073803207907283} a^{14} - \frac{62924754043299847356180038}{1395277594345073803207907283} a^{13} - \frac{39690900582816880569154186}{1395277594345073803207907283} a^{12} - \frac{11595825471544008950651167}{465092531448357934402635761} a^{11} + \frac{5452878781786898497978579}{126843417667733982109809753} a^{10} + \frac{91717705277790906849524730}{465092531448357934402635761} a^{9} + \frac{202985815759376923437184978}{465092531448357934402635761} a^{8} - \frac{325518321281600915446573003}{1395277594345073803207907283} a^{7} + \frac{14877642757112019095190757}{37710205252569562248862359} a^{6} - \frac{129287871361775648756657353}{465092531448357934402635761} a^{5} - \frac{155398673886511492983802571}{1395277594345073803207907283} a^{4} - \frac{501571129102447252065276893}{1395277594345073803207907283} a^{3} + \frac{133327372402885629007422239}{1395277594345073803207907283} a^{2} - \frac{109861343659275150525666819}{465092531448357934402635761} a + \frac{8181392895740319068337143}{126843417667733982109809753}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95245520.4574 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 35 conjugacy class representatives for t18n310 |
| Character table for t18n310 is not computed |
Intermediate fields
| 3.3.697.1, 6.2.8258753.1, 9.9.172281824320289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 173 | Data not computed | ||||||