Normalized defining polynomial
\( x^{18} - 12 x^{16} - 8 x^{15} - 180 x^{14} - 240 x^{13} - 412 x^{12} + 1512 x^{11} - 1512 x^{10} + 28352 x^{9} - 19008 x^{8} + 55968 x^{7} - 59324 x^{6} - 295920 x^{5} - 149760 x^{4} - 769280 x^{3} - 403200 x^{2} + 384000 x - 25600 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(492055314924578283041666849832960000=2^{26}\cdot 3^{18}\cdot 5^{4}\cdot 37^{9}\cdot 233\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37, 233$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{320} a^{15} + \frac{1}{40} a^{13} - \frac{1}{40} a^{12} - \frac{1}{16} a^{11} - \frac{3}{80} a^{9} - \frac{1}{40} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{7}{20} a^{5} + \frac{2}{5} a^{4} + \frac{9}{80} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{1280} a^{16} - \frac{3}{320} a^{14} - \frac{1}{160} a^{13} - \frac{1}{64} a^{12} - \frac{1}{16} a^{11} + \frac{17}{320} a^{10} + \frac{9}{160} a^{9} - \frac{9}{160} a^{8} + \frac{1}{40} a^{7} + \frac{3}{20} a^{6} + \frac{9}{40} a^{5} - \frac{31}{320} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{5907508936338688108366668398018398720} a^{17} + \frac{62255261913257822959367319401231}{184609654260584003386458387438074960} a^{16} + \frac{1871751814530270593433871527470073}{1476877234084672027091667099504599680} a^{15} - \frac{16173721107150264847080563061734679}{738438617042336013545833549752299840} a^{14} - \frac{43538582251509244676712190830205501}{1476877234084672027091667099504599680} a^{13} + \frac{20009168042035414020658040379464333}{369219308521168006772916774876149920} a^{12} - \frac{50473702945668351318055972618815783}{1476877234084672027091667099504599680} a^{11} + \frac{6875769147685404553390846726415781}{738438617042336013545833549752299840} a^{10} - \frac{32554670480599566380495927356760117}{738438617042336013545833549752299840} a^{9} - \frac{621979955882238110220631826350501}{92304827130292001693229193719037480} a^{8} - \frac{7797397112970709003843435135051993}{92304827130292001693229193719037480} a^{7} - \frac{1377970553417513646923280414206567}{36921930852116800677291677487614992} a^{6} + \frac{93229470344086631749722555170844477}{295375446816934405418333419900919936} a^{5} + \frac{59056448588423386893142010159449609}{369219308521168006772916774876149920} a^{4} - \frac{20488814793746400510661143407996649}{92304827130292001693229193719037480} a^{3} + \frac{3258293487392782867895534744193499}{18460965426058400338645838743807496} a^{2} - \frac{888614896849492931804511397132397}{2307620678257300042330729842975937} a + \frac{533485975299674870997370917077640}{2307620678257300042330729842975937}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110315804862 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 174 conjugacy class representatives for t18n874 are not computed |
| Character table for t18n874 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.148.1 x3, 6.6.810448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.22.12 | $x^{12} + 8 x^{10} + 2 x^{8} - 4 x^{6} + 4 x^{4} + 4 x^{2} + 4$ | $6$ | $2$ | $22$ | 12T106 | $[4/3, 4/3, 8/3, 8/3, 3]_{3}^{2}$ | |
| $3$ | 3.9.9.9 | $x^{9} + 18 x^{5} + 27 x^{2} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 37 | Data not computed | ||||||
| 233 | Data not computed | ||||||