Normalized defining polynomial
\( x^{18} - 2 x^{17} - 6 x^{16} + 17 x^{15} + 30 x^{14} - 76 x^{13} - 72 x^{12} + 210 x^{11} + 106 x^{10} - 303 x^{9} - 118 x^{8} + 262 x^{7} + 102 x^{6} - 142 x^{5} - 68 x^{4} + 25 x^{3} + 16 x^{2} - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49048530062408000000000=2^{12}\cdot 5^{9}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} - \frac{8}{19} a^{14} - \frac{8}{19} a^{13} + \frac{1}{19} a^{12} - \frac{6}{19} a^{11} - \frac{7}{19} a^{10} - \frac{4}{19} a^{9} + \frac{5}{19} a^{8} + \frac{9}{19} a^{7} - \frac{5}{19} a^{6} - \frac{8}{19} a^{5} - \frac{6}{19} a^{4} + \frac{8}{19} a^{3} + \frac{3}{19} a^{2} - \frac{1}{19} a + \frac{7}{19}$, $\frac{1}{19} a^{16} + \frac{4}{19} a^{14} - \frac{6}{19} a^{13} + \frac{2}{19} a^{12} + \frac{2}{19} a^{11} - \frac{3}{19} a^{10} - \frac{8}{19} a^{9} - \frac{8}{19} a^{8} - \frac{9}{19} a^{7} + \frac{9}{19} a^{6} + \frac{6}{19} a^{5} - \frac{2}{19} a^{4} - \frac{9}{19} a^{3} + \frac{4}{19} a^{2} - \frac{1}{19} a - \frac{1}{19}$, $\frac{1}{3575415686411} a^{17} - \frac{22069974359}{3575415686411} a^{16} - \frac{83854298401}{3575415686411} a^{15} - \frac{1468873617460}{3575415686411} a^{14} + \frac{999781043856}{3575415686411} a^{13} + \frac{966963651589}{3575415686411} a^{12} + \frac{635433649389}{3575415686411} a^{11} + \frac{761486975039}{3575415686411} a^{10} + \frac{976633283357}{3575415686411} a^{9} + \frac{825989932961}{3575415686411} a^{8} - \frac{954594375449}{3575415686411} a^{7} - \frac{414352237697}{3575415686411} a^{6} + \frac{973185113821}{3575415686411} a^{5} + \frac{603898036870}{3575415686411} a^{4} - \frac{75090234302}{3575415686411} a^{3} + \frac{55635046609}{3575415686411} a^{2} + \frac{974491859567}{3575415686411} a + \frac{194716705441}{3575415686411}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20286.0811613 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.76.1, 6.2.722000.1, 6.6.722000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |