Normalized defining polynomial
\( x^{18} - 9 x^{17} + 72 x^{16} - 372 x^{15} + 1584 x^{14} - 5292 x^{13} + 14172 x^{12} - 30510 x^{11} + 49905 x^{10} - 58939 x^{9} + 38484 x^{8} + 13770 x^{7} - 72978 x^{6} + 102312 x^{5} - 87048 x^{4} + 48672 x^{3} - 17280 x^{2} + 3456 x - 288 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48144624744449479590301442052096=2^{12}\cdot 3^{36}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{9} - \frac{1}{6} a^{8} - \frac{1}{4} a^{7} + \frac{1}{12} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{4} a^{9} + \frac{5}{24} a^{8} + \frac{1}{6} a^{7} - \frac{1}{24} a^{6} - \frac{1}{3} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{24} a^{9} + \frac{1}{6} a^{8} - \frac{1}{24} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{48} a^{11} - \frac{1}{48} a^{10} + \frac{11}{48} a^{9} - \frac{1}{48} a^{8} + \frac{5}{48} a^{7} - \frac{1}{12} a^{6} + \frac{11}{24} a^{5} - \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{15} + \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a$, $\frac{1}{46736736} a^{16} - \frac{1}{5842092} a^{15} - \frac{3605}{23368368} a^{14} + \frac{8435}{7789456} a^{13} - \frac{40547}{23368368} a^{12} - \frac{85865}{23368368} a^{11} + \frac{808135}{23368368} a^{10} - \frac{165625}{1460523} a^{9} + \frac{80485}{46736736} a^{8} + \frac{691861}{7789456} a^{7} - \frac{117971}{5842092} a^{6} - \frac{9105787}{23368368} a^{5} + \frac{1439861}{3894728} a^{4} - \frac{376377}{973682} a^{3} + \frac{391481}{1947364} a^{2} + \frac{212689}{973682} a - \frac{40492}{486841}$, $\frac{1}{1074944928} a^{17} + \frac{1}{358314976} a^{16} - \frac{213221}{33592029} a^{15} - \frac{816185}{179157488} a^{14} - \frac{9985853}{537472464} a^{13} + \frac{5797051}{537472464} a^{12} + \frac{9113599}{537472464} a^{11} - \frac{1475431}{89578744} a^{10} + \frac{20514457}{358314976} a^{9} - \frac{85515925}{1074944928} a^{8} - \frac{121745407}{537472464} a^{7} - \frac{107769983}{537472464} a^{6} - \frac{63287713}{537472464} a^{5} + \frac{40622377}{89578744} a^{4} - \frac{11003601}{22394686} a^{3} + \frac{15442171}{44789372} a^{2} - \frac{6504543}{22394686} a - \frac{2879617}{11197343}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11618980288.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.22356.3, 3.3.621.1, 3.3.22356.1, 3.3.22356.2, 6.2.499790736.1, 9.9.6938632771983936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.9.18.2 | $x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2:C_2$ | $[3/2, 5/2]_{2}$ |
| 3.9.18.2 | $x^{9} + 3 x^{3} + 9 x^{2} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2:C_2$ | $[3/2, 5/2]_{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |