Normalized defining polynomial
\( x^{18} - 6 x^{16} + 24 x^{14} - 92 x^{12} - 192 x^{10} + 480 x^{8} + 100 x^{6} - 648 x^{4} + 432 x^{2} - 96 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47751966659678405306351616=2^{33}\cdot 3^{33}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4}$, $\frac{1}{32} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{16} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{3}{16} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{13} - \frac{3}{16} a^{7} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{64} a^{15} + \frac{1}{32} a^{9} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{337984} a^{16} - \frac{201}{168992} a^{14} + \frac{393}{168992} a^{12} - \frac{2525}{168992} a^{10} + \frac{218}{5281} a^{8} - \frac{1}{4} a^{7} + \frac{18337}{84496} a^{6} + \frac{1317}{5281} a^{4} - \frac{1}{2} a^{3} + \frac{1937}{5281} a^{2} - \frac{5241}{10562}$, $\frac{1}{675968} a^{17} - \frac{201}{337984} a^{15} - \frac{611}{42248} a^{13} + \frac{689}{84496} a^{11} - \frac{1793}{168992} a^{9} + \frac{11809}{84496} a^{7} - \frac{1}{4} a^{6} + \frac{15791}{168992} a^{5} - \frac{1}{2} a^{4} + \frac{2467}{42248} a^{3} - \frac{1}{2} a^{2} - \frac{5201}{42248} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12506856.638762662 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), 3.3.1944.1 x3, 3.1.972.1, 6.2.362797056.11, 6.6.90699264.1, 9.3.352638738432.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.13 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.13 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.13 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| $3$ | 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |