/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 9*x^17 + 40*x^16 - 116*x^15 + 245*x^14 - 399*x^13 + 514*x^12 - 523*x^11 + 406*x^10 - 215*x^9 + 22*x^8 + 129*x^7 - 250*x^6 + 325*x^5 - 287*x^4 + 162*x^3 - 38*x^2 - 7*x + 1, 18, 718, [6, 6], 45951708417342016000000, [2, 5, 23, 37], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, 1/2*a^12 - 1/2*a^10 - 1/2*a^8 - 1/2*a^6 - 1/2*a^4 - 1/2*a^2 - 1/2, 1/2*a^13 - 1/2*a^11 - 1/2*a^9 - 1/2*a^7 - 1/2*a^5 - 1/2*a^3 - 1/2*a, 1/2*a^14 - 1/2, 1/2*a^15 - 1/2*a, 1/104770*a^16 - 4/52385*a^15 + 5364/52385*a^14 - 22571/104770*a^13 + 606/52385*a^12 - 28523/104770*a^11 - 1776/52385*a^10 + 4157/104770*a^9 - 4252/52385*a^8 + 32073/104770*a^7 - 19357/52385*a^6 - 2757/104770*a^5 + 7737/52385*a^4 - 32703/104770*a^3 - 7301/104770*a^2 + 28603/104770*a + 21552/52385, 1/17077510*a^17 + 73/17077510*a^16 + 126732/1707751*a^15 - 96533/17077510*a^14 - 2141349/17077510*a^13 + 1632567/8538755*a^12 - 1049495/3415502*a^11 - 546967/1707751*a^10 - 1767187/17077510*a^9 + 326437/8538755*a^8 - 7603491/17077510*a^7 - 1647873/8538755*a^6 + 6392667/17077510*a^5 - 3659032/8538755*a^4 + 1919748/8538755*a^3 - 7006133/17077510*a^2 - 6335963/17077510*a + 1867489/17077510], 0, 1, [], 0, [ (2074457)/(17077510)*a^(17) - (10003938)/(8538755)*a^(16) + (47150468)/(8538755)*a^(15) - (288212527)/(17077510)*a^(14) + (638654189)/(17077510)*a^(13) - (543710613)/(8538755)*a^(12) + (1463618291)/(17077510)*a^(11) - (780931098)/(8538755)*a^(10) + (1285782317)/(17077510)*a^(9) - (373176432)/(8538755)*a^(8) + (162932697)/(17077510)*a^(7) + (156802188)/(8538755)*a^(6) - (682455067)/(17077510)*a^(5) + (470836447)/(8538755)*a^(4) - (450810271)/(8538755)*a^(3) + (285120748)/(8538755)*a^(2) - (174605877)/(17077510)*a - (2842083)/(3415502) , (1042828)/(8538755)*a^(17) - (9227854)/(8538755)*a^(16) + (81190923)/(17077510)*a^(15) - (116836698)/(8538755)*a^(14) + (245016071)/(8538755)*a^(13) - (395731214)/(8538755)*a^(12) + (504121594)/(8538755)*a^(11) - (504886819)/(8538755)*a^(10) + (382026743)/(8538755)*a^(9) - (191190956)/(8538755)*a^(8) + (4960003)/(8538755)*a^(7) + (134025744)/(8538755)*a^(6) - (246883473)/(8538755)*a^(5) + (314231321)/(8538755)*a^(4) - (275547058)/(8538755)*a^(3) + (144061504)/(8538755)*a^(2) - (46859671)/(17077510)*a - (3296624)/(1707751) , (1042828)/(8538755)*a^(17) - (8500222)/(8538755)*a^(16) + (69548811)/(17077510)*a^(15) - (187751569)/(17077510)*a^(14) + (372316313)/(17077510)*a^(13) - (114639423)/(3415502)*a^(12) + (699240991)/(17077510)*a^(11) - (671374391)/(17077510)*a^(10) + (486368479)/(17077510)*a^(9) - (231593383)/(17077510)*a^(8) - (13848817)/(17077510)*a^(7) + (190817687)/(17077510)*a^(6) - (347556109)/(17077510)*a^(5) + (408513213)/(17077510)*a^(4) - (317025953)/(17077510)*a^(3) + (174447949)/(17077510)*a^(2) - (15648297)/(8538755)*a + (10135758)/(8538755) , (2218451)/(8538755)*a^(17) - (19344611)/(8538755)*a^(16) + (83903982)/(8538755)*a^(15) - (47714852)/(1707751)*a^(14) + (198336521)/(3415502)*a^(13) - (797282644)/(8538755)*a^(12) + (2033878609)/(17077510)*a^(11) - (1028027212)/(8538755)*a^(10) + (319150551)/(3415502)*a^(9) - (86072815)/(1707751)*a^(8) + (113108189)/(17077510)*a^(7) + (47810400)/(1707751)*a^(6) - (195812967)/(3415502)*a^(5) + (126959720)/(1707751)*a^(4) - (1109253959)/(17077510)*a^(3) + (315888681)/(8538755)*a^(2) - (33024531)/(3415502)*a + (2277883)/(8538755) , (9936137)/(17077510)*a^(17) - (42790158)/(8538755)*a^(16) + (182983598)/(8538755)*a^(15) - (1023362597)/(17077510)*a^(14) + (1042823297)/(8538755)*a^(13) - (1638563323)/(8538755)*a^(12) + (2031210618)/(8538755)*a^(11) - (1974647658)/(8538755)*a^(10) + (1438922341)/(8538755)*a^(9) - (676177232)/(8538755)*a^(8) - (47077079)/(8538755)*a^(7) + (585785823)/(8538755)*a^(6) - (1041968606)/(8538755)*a^(5) + (1278849562)/(8538755)*a^(4) - (2080801477)/(17077510)*a^(3) + (516644473)/(8538755)*a^(2) - (63721186)/(8538755)*a - (9402257)/(3415502) , (2533458)/(8538755)*a^(17) - (44941493)/(17077510)*a^(16) + (98744514)/(8538755)*a^(15) - (282955518)/(8538755)*a^(14) + (1178660867)/(17077510)*a^(13) - (944379839)/(8538755)*a^(12) + (2388337453)/(17077510)*a^(11) - (1188485789)/(8538755)*a^(10) + (1790106111)/(17077510)*a^(9) - (449243886)/(8538755)*a^(8) + (35257841)/(17077510)*a^(7) + (311880179)/(8538755)*a^(6) - (1177280251)/(17077510)*a^(5) + (747484586)/(8538755)*a^(4) - (1286238281)/(17077510)*a^(3) + (661852523)/(17077510)*a^(2) - (118032091)/(17077510)*a - (948118)/(1707751) , (3108223)/(17077510)*a^(17) - (12648372)/(8538755)*a^(16) + (51266657)/(8538755)*a^(15) - (136425014)/(8538755)*a^(14) + (531539031)/(17077510)*a^(13) - (400948372)/(8538755)*a^(12) + (955102959)/(17077510)*a^(11) - (443782807)/(8538755)*a^(10) + (610603593)/(17077510)*a^(9) - (130073893)/(8538755)*a^(8) - (65036117)/(17077510)*a^(7) + (152812762)/(8538755)*a^(6) - (526473143)/(17077510)*a^(5) + (306002863)/(8538755)*a^(4) - (223570194)/(8538755)*a^(3) + (108787167)/(8538755)*a^(2) - (14852963)/(17077510)*a - (802705)/(1707751) , (3108223)/(17077510)*a^(17) - (27543047)/(17077510)*a^(16) + (60251869)/(8538755)*a^(15) - (171566021)/(8538755)*a^(14) + (709030709)/(17077510)*a^(13) - (225005165)/(3415502)*a^(12) + (1404139923)/(17077510)*a^(11) - (1370603563)/(17077510)*a^(10) + (998363967)/(17077510)*a^(9) - (463712129)/(17077510)*a^(8) - (35081281)/(17077510)*a^(7) + (404245251)/(17077510)*a^(6) - (711865757)/(17077510)*a^(5) + (887224869)/(17077510)*a^(4) - (367760157)/(8538755)*a^(3) + (175752131)/(8538755)*a^(2) - (28803807)/(17077510)*a - (28806127)/(17077510) , (1643497)/(17077510)*a^(17) - (5757839)/(8538755)*a^(16) + (19771491)/(8538755)*a^(15) - (85542683)/(17077510)*a^(14) + (125579851)/(17077510)*a^(13) - (24335799)/(3415502)*a^(12) + (49243627)/(17077510)*a^(11) + (72934553)/(17077510)*a^(10) - (181775087)/(17077510)*a^(9) + (210813999)/(17077510)*a^(8) - (181072969)/(17077510)*a^(7) + (112992679)/(17077510)*a^(6) - (88935263)/(17077510)*a^(5) - (3816459)/(17077510)*a^(4) + (58821477)/(8538755)*a^(3) - (155186407)/(17077510)*a^(2) + (101445827)/(17077510)*a - (17409)/(8538755) , (1643497)/(17077510)*a^(17) - (16423771)/(17077510)*a^(16) + (39403863)/(8538755)*a^(15) - (243298647)/(17077510)*a^(14) + (542738579)/(17077510)*a^(13) - (929957201)/(17077510)*a^(12) + (1262395251)/(17077510)*a^(11) - (1364167661)/(17077510)*a^(10) + (1146413787)/(17077510)*a^(9) - (693305599)/(17077510)*a^(8) + (189313887)/(17077510)*a^(7) + (240071391)/(17077510)*a^(6) - (569419817)/(17077510)*a^(5) + (811759909)/(17077510)*a^(4) - (390538716)/(8538755)*a^(3) + (249564993)/(8538755)*a^(2) - (172307457)/(17077510)*a - (228161)/(1707751) , (10407)/(52385)*a^(16) - (83256)/(52385)*a^(15) + (328171)/(52385)*a^(14) - (840217)/(52385)*a^(13) + (1560049)/(52385)*a^(12) - (2225621)/(52385)*a^(11) + (2480241)/(52385)*a^(10) - (2103511)/(52385)*a^(9) + (1234377)/(52385)*a^(8) - (327819)/(52385)*a^(7) - (422643)/(52385)*a^(6) + (957811)/(52385)*a^(5) - (1460352)/(52385)*a^(4) + (1524389)/(52385)*a^(3) - (861417)/(52385)*a^(2) + (229391)/(52385)*a + (62958)/(52385) ], 32148.6388386, [[x^3 - x^2 - 3*x + 1, 1], [x^9 - 5*x^7 - 3*x^6 - 5*x^5 + 10*x^4 + 20*x^3 + 5*x^2 - 5*x - 1, 1]]]