Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} - 11 x^{15} - 38 x^{14} + 126 x^{13} - 232 x^{12} + 539 x^{11} - 326 x^{10} - 845 x^{9} + 1726 x^{8} - 3000 x^{7} + 6144 x^{6} - 2419 x^{5} - 4313 x^{4} + 7814 x^{3} - 8884 x^{2} - 3258 x - 419 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45672975569536652017399733=7^{12}\cdot 53^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4905816946456689987316036760773774742} a^{17} - \frac{299148179944178837594664638943506793}{2452908473228344993658018380386887371} a^{16} + \frac{241783069515752777663478705717319321}{2452908473228344993658018380386887371} a^{15} + \frac{84154609811662569733542029378981985}{4905816946456689987316036760773774742} a^{14} - \frac{130140465161122997662259128294471531}{2452908473228344993658018380386887371} a^{13} + \frac{1116311126137337822575691336730500139}{4905816946456689987316036760773774742} a^{12} + \frac{809071567029356604490349408153582791}{4905816946456689987316036760773774742} a^{11} - \frac{2450683565815128707844047134502905575}{4905816946456689987316036760773774742} a^{10} + \frac{1318530573955021934334298072353230491}{4905816946456689987316036760773774742} a^{9} - \frac{893379505397608096933456796184590067}{2452908473228344993658018380386887371} a^{8} + \frac{628032353672497967654130798050352323}{2452908473228344993658018380386887371} a^{7} + \frac{903212475714218013193667787710511731}{4905816946456689987316036760773774742} a^{6} - \frac{1142594823977790706144961998648889772}{2452908473228344993658018380386887371} a^{5} - \frac{1271253630145338974542516068236222137}{4905816946456689987316036760773774742} a^{4} - \frac{1110064543275105021451882042359686395}{4905816946456689987316036760773774742} a^{3} - \frac{1994947031786896059265356436577198331}{4905816946456689987316036760773774742} a^{2} - \frac{1035998992067251827943595682362592339}{4905816946456689987316036760773774742} a + \frac{631485239785139704112590466873050099}{4905816946456689987316036760773774742}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 511646.143485 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_4$ (as 18T30):
| A solvable group of order 72 |
| The 15 conjugacy class representatives for $C_3\times S_4$ |
| Character table for $C_3\times S_4$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 6.2.357453677.3, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $53$ | 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.12.9.2 | $x^{12} - 106 x^{8} + 2809 x^{4} - 9528128$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |