Normalized defining polynomial
\( x^{18} - 27 x^{16} - 42 x^{15} + 360 x^{14} + 531 x^{13} - 1785 x^{12} - 3402 x^{11} + 2772 x^{10} + 5369 x^{9} + 19656 x^{8} + 3150 x^{7} - 51450 x^{6} - 73647 x^{5} + 3087 x^{4} + 198303 x^{3} + 74970 x^{2} - 145530 x - 61054 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(451000961381094148759118508085248=2^{12}\cdot 3^{36}\cdot 7^{12}\cdot 53\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{9} + \frac{3}{7} a^{7} - \frac{1}{7} a^{6}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{10} + \frac{3}{7} a^{8} - \frac{1}{7} a^{7}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6}$, $\frac{1}{14} a^{14} - \frac{1}{14} a^{13} - \frac{5}{14} a^{10} - \frac{3}{14} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{1}{14} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{15} - \frac{1}{14} a^{13} - \frac{1}{14} a^{11} + \frac{3}{7} a^{10} - \frac{1}{14} a^{9} + \frac{1}{7} a^{8} + \frac{1}{14} a^{7} + \frac{1}{7} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{16} - \frac{1}{14} a^{13} - \frac{1}{14} a^{12} - \frac{3}{7} a^{10} - \frac{1}{2} a^{9} - \frac{1}{14} a^{8} + \frac{1}{7} a^{7} + \frac{5}{14} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{101993003501019927706393204446373562414} a^{17} - \frac{434956964492369743336683321312463181}{14570429071574275386627600635196223202} a^{16} - \frac{1769715097816173612410193361679219367}{50996501750509963853196602223186781207} a^{15} + \frac{165424143504308262003798050122689803}{7285214535787137693313800317598111601} a^{14} - \frac{18941488563114286948441496080738935}{7845615653924609823568708034336427878} a^{13} - \frac{940826381470358533766495848254200839}{101993003501019927706393204446373562414} a^{12} + \frac{430881678319411892448769275252628337}{7285214535787137693313800317598111601} a^{11} + \frac{1128667163422918934594528890846922121}{7285214535787137693313800317598111601} a^{10} + \frac{5814161563310520741402203455906555139}{14570429071574275386627600635196223202} a^{9} - \frac{2150284309769746825269797504977797635}{14570429071574275386627600635196223202} a^{8} - \frac{517821001381672147517097105026775351}{14570429071574275386627600635196223202} a^{7} + \frac{226408556598789161011798809816811551}{1120802236274944260509815433476632554} a^{6} + \frac{493827937770679758851117600571419502}{1040744933683876813330542902514015943} a^{5} - \frac{2407460168158882462140386229721179}{80057302591067447179272530962616611} a^{4} - \frac{431092498536782395245374309982038341}{1040744933683876813330542902514015943} a^{3} - \frac{28597333260225898354658700133199636}{94613175789443346666412991137637813} a^{2} - \frac{477336351159982201725178267443354095}{1040744933683876813330542902514015943} a + \frac{177814778562833674382421925515187970}{1040744933683876813330542902514015943}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15576601192.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |