Normalized defining polynomial
\( x^{18} - 9 x^{17} + 18 x^{16} - 45 x^{15} + 378 x^{14} + 63 x^{13} - 1995 x^{12} - 6462 x^{11} + 1458 x^{10} + 22256 x^{9} + 99144 x^{8} - 10080 x^{7} - 173964 x^{6} - 458640 x^{5} + 110736 x^{4} + 596352 x^{3} + 821952 x^{2} - 956160 x - 399616 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(451000961381094148759118508085248=2^{12}\cdot 3^{36}\cdot 7^{12}\cdot 53\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{112} a^{14} - \frac{1}{16} a^{13} + \frac{1}{28} a^{12} + \frac{11}{112} a^{11} - \frac{1}{14} a^{10} + \frac{15}{112} a^{9} + \frac{11}{112} a^{8} + \frac{5}{56} a^{6} - \frac{1}{28} a^{5} - \frac{3}{7} a^{4} - \frac{1}{14} a^{3} + \frac{13}{28} a^{2} - \frac{1}{14} a$, $\frac{1}{448} a^{15} + \frac{1}{448} a^{14} - \frac{3}{56} a^{13} - \frac{41}{448} a^{12} + \frac{3}{56} a^{11} - \frac{11}{64} a^{10} + \frac{75}{448} a^{9} - \frac{55}{112} a^{8} - \frac{37}{224} a^{7} - \frac{23}{112} a^{6} + \frac{25}{56} a^{5} + \frac{1}{4} a^{4} - \frac{3}{112} a^{3} - \frac{5}{56} a^{2} + \frac{3}{28} a - \frac{1}{2}$, $\frac{1}{896} a^{16} - \frac{1}{896} a^{15} - \frac{1}{448} a^{14} - \frac{7}{128} a^{13} - \frac{11}{448} a^{12} + \frac{27}{896} a^{11} - \frac{75}{896} a^{10} - \frac{61}{448} a^{9} + \frac{5}{64} a^{8} - \frac{7}{16} a^{7} - \frac{3}{7} a^{6} + \frac{9}{28} a^{5} - \frac{67}{224} a^{4} + \frac{1}{56} a^{3} - \frac{13}{28} a^{2} - \frac{1}{14} a - \frac{1}{2}$, $\frac{1}{214727575688228598567354864043293462977918464} a^{17} + \frac{1098455228157056125004531116436404130351}{6926695989942858018301769807848176225094144} a^{16} - \frac{34415508058833404058437778902288118500985}{53681893922057149641838716010823365744479616} a^{15} + \frac{780402351251326219107001414049073354152555}{214727575688228598567354864043293462977918464} a^{14} + \frac{775977767993734327451187654555617145493777}{26840946961028574820919358005411682872239808} a^{13} - \frac{17308956758383809935854677369584862500238561}{214727575688228598567354864043293462977918464} a^{12} + \frac{844726659392332998896130151566279223030837}{6926695989942858018301769807848176225094144} a^{11} - \frac{2460687912420015500771570157077309497159483}{13420473480514287410459679002705841436119904} a^{10} + \frac{11659822441237103651521628510221745743758665}{107363787844114299283677432021646731488959232} a^{9} + \frac{18620778752922449227882373379712128519471725}{53681893922057149641838716010823365744479616} a^{8} - \frac{54502215730206563274855495858169085366487}{432918499371428626143860612990511014068384} a^{7} + \frac{2642876847172434372829180953100622365868633}{6710236740257143705229839501352920718059952} a^{6} - \frac{1137411275087925093392300342121054134269923}{53681893922057149641838716010823365744479616} a^{5} - \frac{12566289328781931894206465203776962177574297}{26840946961028574820919358005411682872239808} a^{4} + \frac{391887317964282080254941295019659771599693}{838779592532142963153729937669115089757494} a^{3} - \frac{1311743299808968101216052917341278181690879}{3355118370128571852614919750676460359029976} a^{2} + \frac{529235723202694477952987679275334117484239}{3355118370128571852614919750676460359029976} a + \frac{279248787037456723041407360530859849909}{239651312152040846615351410762604311359284}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5620274061.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |