Normalized defining polynomial
\( x^{18} - 12 x^{15} - 135 x^{12} - 160 x^{9} - 5 x^{6} + 28 x^{3} - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(439842970125000000000000=2^{12}\cdot 3^{6}\cdot 5^{15}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{6} - \frac{3}{10} a^{3} - \frac{3}{10}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{7} - \frac{3}{10} a^{4} - \frac{3}{10} a$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{8} - \frac{3}{10} a^{5} - \frac{3}{10} a^{2}$, $\frac{1}{60} a^{12} - \frac{1}{30} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{11}{30} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{17}{60}$, $\frac{1}{60} a^{13} - \frac{1}{30} a^{10} + \frac{1}{30} a^{9} + \frac{1}{3} a^{8} - \frac{11}{30} a^{7} - \frac{1}{30} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{7}{30} a^{3} - \frac{1}{3} a^{2} - \frac{17}{60} a - \frac{1}{10}$, $\frac{1}{60} a^{14} - \frac{1}{30} a^{11} + \frac{1}{30} a^{10} + \frac{1}{30} a^{9} - \frac{11}{30} a^{8} - \frac{1}{30} a^{7} - \frac{11}{30} a^{6} - \frac{1}{3} a^{5} + \frac{7}{30} a^{4} - \frac{13}{30} a^{3} - \frac{17}{60} a^{2} - \frac{1}{10} a - \frac{1}{10}$, $\frac{1}{2820} a^{15} + \frac{7}{1410} a^{12} - \frac{1}{30} a^{11} - \frac{1}{30} a^{10} - \frac{1}{470} a^{9} - \frac{3}{10} a^{8} + \frac{1}{30} a^{7} + \frac{1}{47} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{4} + \frac{239}{2820} a^{3} - \frac{7}{30} a^{2} + \frac{13}{30} a - \frac{14}{705}$, $\frac{1}{2820} a^{16} + \frac{7}{1410} a^{13} - \frac{1}{30} a^{11} - \frac{1}{470} a^{10} + \frac{1}{30} a^{9} - \frac{3}{10} a^{8} - \frac{44}{141} a^{7} - \frac{1}{30} a^{6} + \frac{13}{30} a^{5} - \frac{701}{2820} a^{4} - \frac{1}{10} a^{3} + \frac{1}{10} a^{2} + \frac{221}{705} a + \frac{7}{30}$, $\frac{1}{2820} a^{17} + \frac{7}{1410} a^{14} - \frac{1}{470} a^{11} + \frac{1}{30} a^{10} + \frac{1}{30} a^{9} + \frac{50}{141} a^{8} - \frac{11}{30} a^{7} + \frac{3}{10} a^{6} + \frac{239}{2820} a^{5} - \frac{13}{30} a^{4} + \frac{7}{30} a^{3} - \frac{14}{705} a^{2} - \frac{13}{30} a + \frac{7}{30}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 164778.665218 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.300.1, 3.3.1300.1, 6.2.450000.1, 6.6.8450000.1, 9.3.59319000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |