Normalized defining polynomial
\( x^{18} - 9 x^{17} + 29 x^{16} - 28 x^{15} - 226 x^{14} + 1358 x^{13} - 4065 x^{12} + 8114 x^{11} - 10773 x^{10} + 7896 x^{9} + 1083 x^{8} - 10684 x^{7} + 14421 x^{6} - 11428 x^{5} + 5996 x^{4} - 2083 x^{3} + 446 x^{2} - 48 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42617365285248096686111328125=5^{9}\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{12} + \frac{3}{10} a^{11} - \frac{9}{20} a^{10} + \frac{1}{20} a^{9} - \frac{2}{5} a^{8} - \frac{1}{20} a^{7} - \frac{1}{4} a^{6} + \frac{9}{20} a^{5} - \frac{2}{5} a^{4} + \frac{7}{20} a^{3} - \frac{9}{20} a^{2} - \frac{1}{5} a + \frac{7}{20}$, $\frac{1}{20} a^{14} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{5} a^{9} + \frac{7}{20} a^{8} - \frac{1}{5} a^{7} - \frac{1}{20} a^{6} - \frac{7}{20} a^{5} + \frac{9}{20} a^{3} - \frac{1}{4} a^{2} + \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{340} a^{15} + \frac{1}{340} a^{14} - \frac{1}{340} a^{13} + \frac{7}{170} a^{12} - \frac{141}{340} a^{11} + \frac{19}{68} a^{10} + \frac{11}{170} a^{9} + \frac{11}{340} a^{8} + \frac{9}{85} a^{7} - \frac{3}{340} a^{6} + \frac{16}{85} a^{5} + \frac{137}{340} a^{4} + \frac{137}{340} a^{3} - \frac{13}{34} a^{2} + \frac{79}{170} a - \frac{39}{340}$, $\frac{1}{931940} a^{16} - \frac{2}{232985} a^{15} - \frac{11961}{931940} a^{14} - \frac{9327}{931940} a^{13} + \frac{28642}{232985} a^{12} - \frac{100551}{931940} a^{11} + \frac{12671}{54820} a^{10} + \frac{10393}{27410} a^{9} + \frac{5538}{46597} a^{8} - \frac{294393}{931940} a^{7} - \frac{290473}{931940} a^{6} - \frac{208461}{465970} a^{5} + \frac{274219}{931940} a^{4} - \frac{121757}{931940} a^{3} - \frac{439737}{931940} a^{2} - \frac{204161}{465970} a + \frac{132019}{465970}$, $\frac{1}{931940} a^{17} - \frac{1061}{931940} a^{15} - \frac{857}{931940} a^{14} - \frac{17609}{931940} a^{13} - \frac{2262}{232985} a^{12} - \frac{84657}{931940} a^{11} - \frac{190189}{931940} a^{10} - \frac{2137}{54820} a^{9} - \frac{25291}{186388} a^{8} + \frac{54682}{232985} a^{7} + \frac{162013}{931940} a^{6} + \frac{74142}{232985} a^{5} + \frac{12887}{54820} a^{4} - \frac{165549}{465970} a^{3} + \frac{38701}{186388} a^{2} + \frac{203633}{465970} a + \frac{240201}{931940}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46084606.773 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 35 conjugacy class representatives for t18n310 |
| Character table for t18n310 is not computed |
Intermediate fields
| 3.3.985.1, 6.2.4851125.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $139$ | 139.6.4.1 | $x^{6} + 695 x^{3} + 154568$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 139.12.0.1 | $x^{12} - x + 22$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $197$ | 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |