Normalized defining polynomial
\( x^{18} - 8 x^{17} + 27 x^{16} - 42 x^{15} - 12 x^{14} + 242 x^{13} - 833 x^{12} + 2227 x^{11} - 5196 x^{10} + 10127 x^{9} - 15321 x^{8} + 14901 x^{7} - 1829 x^{6} - 22543 x^{5} + 46651 x^{4} - 53722 x^{3} + 41301 x^{2} - 20001 x + 4181 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(416191250312479879983411857=19^{16}\cdot 113^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} + \frac{12}{37} a^{15} + \frac{9}{37} a^{14} + \frac{2}{37} a^{13} - \frac{15}{37} a^{11} + \frac{14}{37} a^{10} + \frac{13}{37} a^{9} - \frac{1}{37} a^{8} - \frac{18}{37} a^{7} + \frac{6}{37} a^{6} + \frac{18}{37} a^{5} + \frac{17}{37} a^{4} + \frac{15}{37} a^{3} + \frac{15}{37} a^{2} - \frac{16}{37} a$, $\frac{1}{1050783468577241060475023973507319} a^{17} + \frac{605884770921904589739570193698}{1050783468577241060475023973507319} a^{16} - \frac{3482825510387472346876476275372}{9298968748471159827212601535463} a^{15} + \frac{353248948772792903217203096736280}{1050783468577241060475023973507319} a^{14} - \frac{240226509118543563301391388283661}{1050783468577241060475023973507319} a^{13} - \frac{375696491105143213609354749809281}{1050783468577241060475023973507319} a^{12} - \frac{519136461352475103187276223006485}{1050783468577241060475023973507319} a^{11} + \frac{299987703954357935523575924648917}{1050783468577241060475023973507319} a^{10} + \frac{3392685522396871596246459318687}{6958830917730073248178966711969} a^{9} + \frac{219521312072241862719240754196751}{1050783468577241060475023973507319} a^{8} + \frac{520730953193334949915039133502851}{1050783468577241060475023973507319} a^{7} + \frac{361807738175692740803730366219181}{1050783468577241060475023973507319} a^{6} + \frac{136539987409730029887833115964115}{1050783468577241060475023973507319} a^{5} + \frac{14227947368760612477717304998228}{1050783468577241060475023973507319} a^{4} + \frac{63115891836919933834226248433825}{1050783468577241060475023973507319} a^{3} + \frac{201460577389768151105962498601}{6958830917730073248178966711969} a^{2} - \frac{3075134133296082638182530395990}{9298968748471159827212601535463} a - \frac{16930900466123048534112646322}{251323479688409725059800041499}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1701924.22156 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_9$ (as 18T26):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_2\times C_2^2:C_9$ |
| Character table for $C_2\times C_2^2:C_9$ is not computed |
Intermediate fields
| 3.3.361.1, 6.2.14726273.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| $113$ | $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |