Normalized defining polynomial
\( x^{18} - 9 x^{17} + 27 x^{16} + 27 x^{15} - 360 x^{14} + 585 x^{13} + 1647 x^{12} - 7227 x^{11} + 6669 x^{10} + 2428 x^{9} + 8109 x^{8} - 11529 x^{7} - 59439 x^{6} + 8613 x^{5} + 397998 x^{4} - 762951 x^{3} + 608751 x^{2} - 225693 x + 31747 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(408453700873443757366748837511168=2^{16}\cdot 3^{37}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} - \frac{1}{7} a^{14} + \frac{3}{7} a^{12} + \frac{1}{7} a^{11} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} - \frac{1}{7} a^{7} - \frac{3}{7} a^{6} + \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{16} - \frac{1}{7} a^{14} + \frac{3}{7} a^{13} - \frac{3}{7} a^{12} - \frac{2}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7}$, $\frac{1}{2103668643637794822589157141614026869059} a^{17} - \frac{16099989121035707513457578076634304548}{2103668643637794822589157141614026869059} a^{16} + \frac{50173581161019435776571856549953755824}{2103668643637794822589157141614026869059} a^{15} - \frac{846199222191793045668959193171418573864}{2103668643637794822589157141614026869059} a^{14} - \frac{287175759337433536284369891355088754052}{2103668643637794822589157141614026869059} a^{13} + \frac{439123878120055411795535692423846885}{4685230832155445039174069357714981891} a^{12} + \frac{947584566437994574242332498495030946197}{2103668643637794822589157141614026869059} a^{11} - \frac{554278150092738675190953160112355039033}{2103668643637794822589157141614026869059} a^{10} + \frac{70698510778147960556764098326096681998}{2103668643637794822589157141614026869059} a^{9} - \frac{307754710789821781220403188676995554760}{2103668643637794822589157141614026869059} a^{8} + \frac{424815995842909923043094608142458691762}{2103668643637794822589157141614026869059} a^{7} - \frac{596614282654078970057736759085180978046}{2103668643637794822589157141614026869059} a^{6} - \frac{145752553959163161369498969198524247222}{300524091948256403227022448802003838437} a^{5} - \frac{346980966539115345929913303188453074953}{2103668643637794822589157141614026869059} a^{4} + \frac{320243592151154942557316262150425791231}{2103668643637794822589157141614026869059} a^{3} + \frac{985199609839203195385550869091033152871}{2103668643637794822589157141614026869059} a^{2} + \frac{599518393053988516482326713305677154202}{2103668643637794822589157141614026869059} a + \frac{96760448829986180449149566192556039197}{300524091948256403227022448802003838437}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10158169979.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.2 | $x^{6} + 2 x^{3} + 2 x^{2} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |