Normalized defining polynomial
\( x^{18} - x^{17} + 4 x^{16} - 10 x^{15} + 4 x^{14} - 13 x^{13} + 12 x^{12} + 93 x^{11} - 167 x^{10} + 125 x^{9} - 305 x^{8} + 577 x^{7} - 322 x^{6} - 145 x^{5} + 154 x^{4} + 44 x^{3} - 64 x^{2} + 15 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(394876295174073378555289=19^{16}\cdot 37^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{229} a^{16} - \frac{103}{229} a^{15} - \frac{105}{229} a^{14} + \frac{36}{229} a^{13} + \frac{28}{229} a^{12} - \frac{60}{229} a^{11} - \frac{29}{229} a^{10} - \frac{104}{229} a^{9} - \frac{34}{229} a^{8} + \frac{109}{229} a^{7} + \frac{33}{229} a^{6} + \frac{61}{229} a^{5} - \frac{57}{229} a^{4} + \frac{41}{229} a^{3} - \frac{98}{229} a^{2} + \frac{78}{229} a - \frac{82}{229}$, $\frac{1}{37171192863439} a^{17} - \frac{59974799760}{37171192863439} a^{16} - \frac{15933409609840}{37171192863439} a^{15} - \frac{11137204067115}{37171192863439} a^{14} - \frac{4681692393282}{37171192863439} a^{13} + \frac{2236028493133}{37171192863439} a^{12} - \frac{14835591393638}{37171192863439} a^{11} - \frac{5983928999774}{37171192863439} a^{10} + \frac{1003774295895}{37171192863439} a^{9} - \frac{2646513457410}{37171192863439} a^{8} - \frac{7090982936443}{37171192863439} a^{7} + \frac{12348818989239}{37171192863439} a^{6} + \frac{12015128846045}{37171192863439} a^{5} + \frac{11492401760068}{37171192863439} a^{4} + \frac{13575724505675}{37171192863439} a^{3} - \frac{1866594111876}{37171192863439} a^{2} - \frac{16010370355898}{37171192863439} a - \frac{5508154908350}{37171192863439}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59372.2035473 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t18n368 |
| Character table for t18n368 is not computed |
Intermediate fields
| 3.3.361.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |
| 37 | Data not computed | ||||||