Normalized defining polynomial
\( x^{18} - 3 x^{16} - 6 x^{15} - 20 x^{14} + 10 x^{13} + 55 x^{12} - 63 x^{8} + 720 x^{7} + 189 x^{6} - 1062 x^{5} + 180 x^{4} + 504 x^{3} - 180 x^{2} - 72 x + 36 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3922632451125000000000000=2^{12}\cdot 3^{22}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{5}{12} a^{8} + \frac{1}{3} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12036} a^{16} - \frac{41}{6018} a^{15} - \frac{47}{12036} a^{14} - \frac{25}{354} a^{13} + \frac{103}{2006} a^{12} - \frac{77}{1003} a^{11} - \frac{2525}{12036} a^{10} - \frac{1325}{6018} a^{9} + \frac{686}{3009} a^{8} + \frac{77}{177} a^{7} + \frac{4037}{12036} a^{6} + \frac{453}{1003} a^{5} + \frac{1697}{4012} a^{4} + \frac{495}{1003} a^{3} + \frac{623}{2006} a^{2} - \frac{129}{2006} a + \frac{333}{1003}$, $\frac{1}{571754333727372} a^{17} - \frac{792454279}{571754333727372} a^{16} + \frac{2106922809583}{95292388954562} a^{15} - \frac{9880824869381}{285877166863686} a^{14} - \frac{4289339468815}{190584777909124} a^{13} + \frac{2500839122879}{142938583431843} a^{12} + \frac{13439355849091}{95292388954562} a^{11} - \frac{2137365850091}{16816303933158} a^{10} - \frac{32584386986201}{571754333727372} a^{9} - \frac{44964947158425}{95292388954562} a^{8} - \frac{77483440655725}{285877166863686} a^{7} + \frac{40051749518869}{285877166863686} a^{6} - \frac{20232873878912}{47646194477281} a^{5} - \frac{72575039347323}{190584777909124} a^{4} + \frac{35210942884929}{95292388954562} a^{3} - \frac{1357785943895}{5605434644386} a^{2} + \frac{27718008228349}{95292388954562} a - \frac{3645149714661}{47646194477281}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 385463.69192704296 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.300.1, 6.2.450000.1, 9.3.177147000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.22.83 | $x^{12} + 27 x^{11} - 27 x^{10} + 3 x^{9} - 9 x^{8} - 36 x^{7} - 9 x^{6} + 27 x^{5} + 36 x^{3} + 27 x + 36$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[5/2]_{2}^{6}$ | |
| 5 | Data not computed | ||||||