Properties

Label 18.6.39226324511...0000.1
Degree $18$
Signature $[6, 6]$
Discriminant $2^{12}\cdot 3^{22}\cdot 5^{15}$
Root discriminant $23.24$
Ramified primes $2, 3, 5$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_3^2:S_3$ (as 18T52)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, -59, 151, -195, 413, -536, 713, -832, 805, -549, 223, -4, -134, 160, -99, 38, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 38*x^16 - 99*x^15 + 160*x^14 - 134*x^13 - 4*x^12 + 223*x^11 - 549*x^10 + 805*x^9 - 832*x^8 + 713*x^7 - 536*x^6 + 413*x^5 - 195*x^4 + 151*x^3 - 59*x^2 - 7*x + 1)
 
gp: K = bnfinit(x^18 - 9*x^17 + 38*x^16 - 99*x^15 + 160*x^14 - 134*x^13 - 4*x^12 + 223*x^11 - 549*x^10 + 805*x^9 - 832*x^8 + 713*x^7 - 536*x^6 + 413*x^5 - 195*x^4 + 151*x^3 - 59*x^2 - 7*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 38 x^{16} - 99 x^{15} + 160 x^{14} - 134 x^{13} - 4 x^{12} + 223 x^{11} - 549 x^{10} + 805 x^{9} - 832 x^{8} + 713 x^{7} - 536 x^{6} + 413 x^{5} - 195 x^{4} + 151 x^{3} - 59 x^{2} - 7 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3922632451125000000000000=2^{12}\cdot 3^{22}\cdot 5^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{33108315140789402139} a^{17} - \frac{1325578068398185286}{33108315140789402139} a^{16} + \frac{1729612640890952362}{11036105046929800713} a^{15} - \frac{1936610806566719827}{11036105046929800713} a^{14} - \frac{5421989817061786667}{33108315140789402139} a^{13} + \frac{11301706121104035893}{33108315140789402139} a^{12} + \frac{13129925032407165157}{33108315140789402139} a^{11} - \frac{14086511837332438153}{33108315140789402139} a^{10} + \frac{8200217056929598742}{33108315140789402139} a^{9} + \frac{4961308396900986182}{11036105046929800713} a^{8} + \frac{10050538342365789173}{33108315140789402139} a^{7} + \frac{565999839198914102}{1141666039337565591} a^{6} + \frac{9155829894944682824}{33108315140789402139} a^{5} + \frac{3551659675494868801}{33108315140789402139} a^{4} - \frac{14346132672626685779}{33108315140789402139} a^{3} + \frac{6156026191453152578}{33108315140789402139} a^{2} + \frac{948942253833941037}{3678701682309933571} a - \frac{6906448274615572987}{33108315140789402139}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 278228.3684845452 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_3^2:S_3$ (as 18T52):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 108
The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$
Character table for $C_2\times C_3^2:S_3$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.300.1, 6.2.450000.1, 9.3.177147000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.12.22.67$x^{12} + 99 x^{11} + 117 x^{10} - 114 x^{9} - 81 x^{8} + 9 x^{7} - 15 x^{6} + 54 x^{5} - 108 x^{4} + 45 x^{3} - 81 x^{2} - 108 x - 72$$6$$2$$22$$D_6$$[5/2]_{2}^{2}$
5Data not computed