Normalized defining polynomial
\( x^{18} - 3 x^{17} + 2 x^{16} - 5 x^{15} + 4 x^{14} + 29 x^{13} - 5 x^{12} - 83 x^{11} + 7 x^{10} + 105 x^{9} + 7 x^{8} - 83 x^{7} - 5 x^{6} + 29 x^{5} + 4 x^{4} - 5 x^{3} + 2 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(378999434518066388917=11^{4}\cdot 37^{5}\cdot 139^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{537} a^{16} - \frac{67}{537} a^{15} - \frac{7}{537} a^{14} - \frac{206}{537} a^{13} - \frac{17}{179} a^{12} - \frac{260}{537} a^{11} + \frac{218}{537} a^{10} - \frac{57}{179} a^{9} - \frac{62}{179} a^{8} + \frac{187}{537} a^{7} + \frac{218}{537} a^{6} - \frac{27}{179} a^{5} - \frac{17}{179} a^{4} - \frac{9}{179} a^{3} - \frac{62}{179} a^{2} - \frac{82}{179} a - \frac{178}{537}$, $\frac{1}{537} a^{17} - \frac{7}{179} a^{15} + \frac{41}{537} a^{14} - \frac{70}{537} a^{13} + \frac{82}{537} a^{12} - \frac{197}{537} a^{11} - \frac{81}{179} a^{10} - \frac{8}{537} a^{9} + \frac{76}{537} a^{8} + \frac{217}{537} a^{7} - \frac{51}{179} a^{6} + \frac{250}{537} a^{5} - \frac{74}{179} a^{4} - \frac{26}{537} a^{3} - \frac{178}{537} a^{2} + \frac{166}{537} a - \frac{112}{537}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1568.66869653 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 92897280 |
| The 168 conjugacy class representatives for t18n966 are not computed |
| Character table for t18n966 is not computed |
Intermediate fields
| 9.5.3200504329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 37 | Data not computed | ||||||
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.6.0.1 | $x^{6} - x + 21$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 139.8.4.1 | $x^{8} + 77284 x^{4} - 2685619 x^{2} + 1493204164$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |