Normalized defining polynomial
\( x^{18} - 12 x^{15} + 9 x^{14} + 54 x^{13} - 18 x^{12} + 72 x^{11} - 261 x^{10} - 14 x^{9} + 135 x^{8} - 270 x^{7} + 840 x^{6} - 1116 x^{5} + 1269 x^{4} - 1026 x^{3} + 576 x^{2} - 252 x + 49 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36644198070556426025390625=3^{36}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{9} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{9} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{18}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{10} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{9} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{18} a$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{12} + \frac{1}{18} a^{11} - \frac{1}{12} a^{10} - \frac{1}{18} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{6} + \frac{1}{18} a^{5} + \frac{1}{4} a^{4} - \frac{1}{18} a^{3} - \frac{11}{36} a^{2} - \frac{1}{6} a - \frac{7}{36}$, $\frac{1}{1260} a^{15} - \frac{23}{1260} a^{13} + \frac{4}{315} a^{12} - \frac{19}{420} a^{11} + \frac{23}{315} a^{10} - \frac{11}{315} a^{9} - \frac{23}{210} a^{7} - \frac{22}{45} a^{6} - \frac{29}{140} a^{5} + \frac{146}{315} a^{4} - \frac{65}{252} a^{3} - \frac{61}{210} a^{2} + \frac{421}{1260} a + \frac{14}{45}$, $\frac{1}{42840} a^{16} + \frac{1}{42840} a^{15} - \frac{29}{21420} a^{14} + \frac{23}{2040} a^{13} - \frac{47}{2380} a^{12} + \frac{53}{1224} a^{11} - \frac{337}{42840} a^{10} + \frac{1483}{21420} a^{9} - \frac{382}{1785} a^{8} + \frac{982}{5355} a^{7} + \frac{6263}{42840} a^{6} + \frac{7813}{42840} a^{5} - \frac{199}{510} a^{4} + \frac{5323}{14280} a^{3} - \frac{523}{4284} a^{2} - \frac{7307}{42840} a - \frac{779}{6120}$, $\frac{1}{3811174920} a^{17} + \frac{83}{22685565} a^{16} + \frac{23403}{60494840} a^{15} - \frac{17816881}{3811174920} a^{14} + \frac{104639411}{3811174920} a^{13} + \frac{60581911}{3811174920} a^{12} - \frac{2156687}{63519582} a^{11} + \frac{12077789}{224186760} a^{10} - \frac{101591183}{1905587460} a^{9} - \frac{7777268}{68056695} a^{8} - \frac{52532269}{423463880} a^{7} + \frac{121517113}{635195820} a^{6} - \frac{34492943}{544453560} a^{5} + \frac{69952747}{3811174920} a^{4} - \frac{1823215483}{3811174920} a^{3} + \frac{87347181}{423463880} a^{2} + \frac{177255977}{381117492} a - \frac{86579903}{544453560}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1592430.98785 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3.C_2$ (as 18T49):
| A solvable group of order 108 |
| The 14 conjugacy class representatives for $C_3^2:S_3.C_2$ |
| Character table for $C_3^2:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 6.2.4100625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |