Normalized defining polynomial
\( x^{18} - 2 x^{17} - 11 x^{16} - 2 x^{15} + 310 x^{14} - 405 x^{13} - 3568 x^{12} + 9026 x^{11} + 14204 x^{10} - 58815 x^{9} - 15539 x^{8} + 189202 x^{7} - 64469 x^{6} - 273183 x^{5} + 156303 x^{4} + 150741 x^{3} - 81162 x^{2} - 9963 x - 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3579577017830391873800000000000=2^{12}\cdot 5^{11}\cdot 17^{8}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{2}{9} a^{10} + \frac{1}{3} a^{9} - \frac{4}{9} a^{8} - \frac{4}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{14} + \frac{1}{27} a^{13} + \frac{10}{27} a^{12} - \frac{2}{27} a^{11} + \frac{1}{9} a^{10} - \frac{13}{27} a^{9} - \frac{4}{27} a^{8} + \frac{8}{27} a^{7} + \frac{2}{9} a^{6} - \frac{5}{27} a^{5} - \frac{2}{27} a^{4} + \frac{10}{27} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{81} a^{16} + \frac{1}{81} a^{15} + \frac{1}{81} a^{14} + \frac{10}{81} a^{13} + \frac{25}{81} a^{12} + \frac{1}{27} a^{11} - \frac{13}{81} a^{10} + \frac{23}{81} a^{9} - \frac{19}{81} a^{8} - \frac{7}{27} a^{7} + \frac{22}{81} a^{6} + \frac{25}{81} a^{5} + \frac{37}{81} a^{4} - \frac{13}{27} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{342536627152199830196104461020481607413} a^{17} - \frac{1392342264562567606100570074269398972}{342536627152199830196104461020481607413} a^{16} + \frac{3076330458283554736550452258711893055}{342536627152199830196104461020481607413} a^{15} + \frac{7211711249118364333669216695708625840}{342536627152199830196104461020481607413} a^{14} + \frac{12282189227673462849484384585324870906}{342536627152199830196104461020481607413} a^{13} - \frac{1344562517298538468602077485881900121}{114178875717399943398701487006827202471} a^{12} - \frac{18089000931317603711993960905633299889}{342536627152199830196104461020481607413} a^{11} + \frac{116240640226749303709977865168899029615}{342536627152199830196104461020481607413} a^{10} + \frac{7398637608906951037050861380496300242}{342536627152199830196104461020481607413} a^{9} - \frac{45944291557970449727258051391053155718}{114178875717399943398701487006827202471} a^{8} - \frac{143542004538991445210995923453442767230}{342536627152199830196104461020481607413} a^{7} + \frac{154526181301389916024931302904243588608}{342536627152199830196104461020481607413} a^{6} - \frac{46178923400349840836662780521835862990}{342536627152199830196104461020481607413} a^{5} + \frac{5591017136002058908653804313192496789}{12686541746377771488744609667425244719} a^{4} + \frac{12793758733658658062683386464061645632}{38059625239133314466233829002275734157} a^{3} + \frac{1721485383097870313986862815913694982}{12686541746377771488744609667425244719} a^{2} - \frac{375316520907433661352110729239724754}{1409615749597530165416067740825027191} a + \frac{151893534541509468889615724839146207}{1409615749597530165416067740825027191}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138117514.681 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times (C_3\times A_4):S_3$ (as 18T156):
| A solvable group of order 432 |
| The 38 conjugacy class representatives for $C_2\times (C_3\times A_4):S_3$ |
| Character table for $C_2\times (C_3\times A_4):S_3$ is not computed |
Intermediate fields
| 3.3.148.1, 6.2.109520.1, 9.9.169223568520000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.8.2 | $x^{12} + 25 x^{6} - 250 x^{3} + 1250$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $17$ | 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.12.8.2 | $x^{12} - 4913 x^{3} + 918731$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |