Normalized defining polynomial
\( x^{18} + x^{16} - 19 x^{14} - 77 x^{12} - 63 x^{11} - 133 x^{10} - 259 x^{9} + 28 x^{8} + 28 x^{7} + 525 x^{6} + 623 x^{5} + 655 x^{4} + 805 x^{3} - 136 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(352418591388286337360173=7^{16}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{68025482879071563756800581} a^{17} - \frac{1639610700311573801868642}{68025482879071563756800581} a^{16} - \frac{1942228897916703242730535}{68025482879071563756800581} a^{15} - \frac{26740469504604491530331441}{68025482879071563756800581} a^{14} - \frac{7659368304192520523018992}{68025482879071563756800581} a^{13} - \frac{22772630496500940083888646}{68025482879071563756800581} a^{12} + \frac{7916822196434146463055245}{68025482879071563756800581} a^{11} + \frac{152833018009169065478842}{1659158119001745457482941} a^{10} + \frac{20924029086745032582484580}{68025482879071563756800581} a^{9} + \frac{14552723978111982216724695}{68025482879071563756800581} a^{8} + \frac{3873765791131644539238048}{68025482879071563756800581} a^{7} - \frac{19611793672028984322943316}{68025482879071563756800581} a^{6} - \frac{6188003308356527992879624}{68025482879071563756800581} a^{5} - \frac{29360704756097980786802973}{68025482879071563756800581} a^{4} + \frac{5324028980532457928526120}{68025482879071563756800581} a^{3} - \frac{19593041139255881162652980}{68025482879071563756800581} a^{2} + \frac{7419116926718692708525505}{68025482879071563756800581} a - \frac{1097998218370933588812434}{68025482879071563756800581}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52315.3010244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2.A_4$ (as 18T92):
| A solvable group of order 216 |
| The 40 conjugacy class representatives for $C_2\times C_3^2.A_4$ |
| Character table for $C_2\times C_3^2.A_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.2.31213.1, 9.9.164648481361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.5.4 | $x^{6} + 26$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |