Normalized defining polynomial
\( x^{18} - 2 x^{16} + 3 x^{14} - 4 x^{12} + 18 x^{10} - 41 x^{8} + 53 x^{6} - 39 x^{4} + 11 x^{2} - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3511479662680207261696=2^{22}\cdot 307^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 307$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{14} - \frac{1}{14} a^{12} - \frac{1}{2} a^{10} - \frac{1}{7} a^{8} - \frac{5}{14} a^{6} + \frac{3}{14}$, $\frac{1}{14} a^{15} - \frac{1}{14} a^{13} - \frac{1}{2} a^{11} - \frac{1}{7} a^{9} - \frac{5}{14} a^{7} + \frac{3}{14} a$, $\frac{1}{98} a^{16} + \frac{1}{49} a^{14} + \frac{11}{98} a^{12} - \frac{1}{2} a^{11} + \frac{20}{49} a^{10} + \frac{31}{98} a^{8} - \frac{15}{98} a^{6} - \frac{1}{14} a^{4} - \frac{1}{2} a^{3} + \frac{31}{98} a^{2} - \frac{1}{2} a - \frac{6}{49}$, $\frac{1}{98} a^{17} + \frac{1}{49} a^{15} + \frac{11}{98} a^{13} - \frac{9}{98} a^{11} - \frac{1}{2} a^{10} + \frac{31}{98} a^{9} - \frac{15}{98} a^{7} - \frac{1}{14} a^{5} - \frac{9}{49} a^{3} - \frac{1}{2} a^{2} + \frac{37}{98} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6659.00430468 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_3\times A_4):S_3$ (as 18T108):
| A solvable group of order 216 |
| The 19 conjugacy class representatives for $(C_3\times A_4):S_3$ |
| Character table for $(C_3\times A_4):S_3$ |
Intermediate fields
| 3.1.307.1, 6.2.6031936.2, 9.3.462951088.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.16.7 | $x^{12} + 5 x^{10} + 4 x^{8} + x^{6} + 4 x^{4} + x^{2} + 3$ | $6$ | $2$ | $16$ | 12T42 | $[2, 2]_{3}^{6}$ | |
| 307 | Data not computed | ||||||